login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087432
Expansion of 1+x*(1-x-4*x^2)/((1+x)*(1-2*x)*(1-3*x)).
3
1, 1, 3, 7, 19, 51, 143, 407, 1179, 3451, 10183, 30207, 89939, 268451, 802623, 2402407, 7196299, 21567051, 64657463, 193885007, 581480259, 1744091251, 5231574703, 15693326007, 47077181819, 141225953051, 423666674343
OFFSET
0,3
COMMENTS
Binomial transform of A047849 (with interpolated zeros, 1,0,2,0,6,0,...). Binomial transform is A087433.
FORMULA
a(n) = (-1)^n/6+2^n/3+3^n/6, n>0.
For n>4, a(n) = 6*a(n-1) - 9*a(n-2) - 4*a(n-3) + 12*a(n-4). - Gary W. Adamson, Jun 14 2006
MATHEMATICA
CoefficientList[Series[1+x (1-x-4x^2)/((1+x)(1-2x)(1-3x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -1, -6}, {1, 1, 3, 7}, 30] (* Harvey P. Dale, Aug 23 2017 *)
PROG
(PARI) Vec((x-1)*(2*x^2+2*x-1)/((1+x)*(1-2*x)*(1-3*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012, corrected Nov 27 2014
CROSSREFS
First differences of A093379.
Sequence in context: A026325 A002426 A011769 * A135052 A198305 A146597
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Sep 02 2003
STATUS
approved