OFFSET
0,2
REFERENCES
L. Euler, (E326) Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
See also the references mentioned under A002426.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990) 3-20, esp. 18-19.
V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
L. W. Shapiro et al., The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
Index entries for linear recurrences with constant coefficients, signature (6,-8,-8,14,4,-3).
FORMULA
a(n) = +6*a(n-1) -8*a(n-2) -8*a(n-3) +14*a(n-4) +4*a(n-5) -3*a(n-6). [R. J. Mathar, Sep 04 2010]
G.f.: (1-3*x-3*x^2+9*x^3+3*x^4-3*x^5) / ( (3*x-1)*(1+x)*(x^2+x-1)*(x^2-3*x+1) ). - Sergei N. Gladkovskii, Dec 16 2011
a(n+1) = (1/10) * (3^n + 2*Lucas(2n) + Lucas(n) + (-1)^n ). - Ralf Stephan, Aug 10 2013
a(k) = 3^(k+1)*x^k/10 + (-1)^(k+1)*x^k/10 + p^(k+1)*x^k/5 + (-q)^(k+1)*x^k/5 + p^(2*k+2)*x^k/5 + q^(2*k+2)*x^k/5 ; p=(sqrt(5)+1)/2 , q=(sqrt(5)-1)/2 . - Sergei N. Gladkovskii, Dec 17 2011
MAPLE
MATHEMATICA
nxt[{n_, a_}]:=Module[{fib=Fibonacci[n]}, {n+1, 3a-fib(fib+1)}]; Transpose[ [ nxt, {0, 1}, 30]][[2]] (* or *) LinearRecurrence[{6, -8, -8, 14, 4, -3}, {1, 3, 7, 19, 51, 141}, 30] (* Harvey P. Dale, Jun 05 2015 *)
PROG
(Haskell)
a011769 n = a011769_list !! n
a011769_list = 1 : zipWith (-) (map (* 3) a011769_list) a059727_list
-- Reinhard Zumkeller, Dec 17 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Values at n>=18 corrected by R. J. Mathar, Sep 04 2010
STATUS
approved