login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011769
a(0) = 1, a(n+1) = 3 * a(n) - F(n)*(F(n) + 1), where F(n) = A000045(n) is n-th Fibonacci number.
1
1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8955, 25675, 73945, 213825, 620595, 1807263, 5279283, 15465139, 45420261, 133708777, 394446691, 1165855131, 3451793403, 10235554347, 30392965809, 90357645121, 268922897571, 801139867063, 2388683219347, 7127469430899
OFFSET
0,2
REFERENCES
L. Euler, (E326) Observationes analyticae, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 59.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 575.
P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 42.)
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 74.
See also the references mentioned under A002426.
LINKS
R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990) 3-20, esp. 18-19.
V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart., 7 (1969), 341-358, 393.
L. W. Shapiro et al., The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
FORMULA
a(n) = +6*a(n-1) -8*a(n-2) -8*a(n-3) +14*a(n-4) +4*a(n-5) -3*a(n-6). [R. J. Mathar, Sep 04 2010]
G.f.: (1-3*x-3*x^2+9*x^3+3*x^4-3*x^5) / ( (3*x-1)*(1+x)*(x^2+x-1)*(x^2-3*x+1) ). - Sergei N. Gladkovskii, Dec 16 2011
a(n+1) = (1/10) * (3^n + 2*Lucas(2n) + Lucas(n) + (-1)^n ). - Ralf Stephan, Aug 10 2013
a(k) = 3^(k+1)*x^k/10 + (-1)^(k+1)*x^k/10 + p^(k+1)*x^k/5 + (-q)^(k+1)*x^k/5 + p^(2*k+2)*x^k/5 + q^(2*k+2)*x^k/5 ; p=(sqrt(5)+1)/2 , q=(sqrt(5)-1)/2 . - Sergei N. Gladkovskii, Dec 17 2011
MAPLE
A011769 := proc(n) if n = 0 then 1; else 3*procname(n-1)-combinat[fibonacci](n-1)*(1+combinat[fibonacci](n-1)) ; end if; end proc:
seq(A011769(n), n=0..40) ;
MATHEMATICA
nxt[{n_, a_}]:=Module[{fib=Fibonacci[n]}, {n+1, 3a-fib(fib+1)}]; Transpose[ [ nxt, {0, 1}, 30]][[2]] (* or *) LinearRecurrence[{6, -8, -8, 14, 4, -3}, {1, 3, 7, 19, 51, 141}, 30] (* Harvey P. Dale, Jun 05 2015 *)
PROG
(Haskell)
a011769 n = a011769_list !! n
a011769_list = 1 : zipWith (-) (map (* 3) a011769_list) a059727_list
-- Reinhard Zumkeller, Dec 17 2011
CROSSREFS
Cf. A002426.
Cf. A059727.
Sequence in context: A052948 A026325 A002426 * A087432 A135052 A198305
KEYWORD
nonn,easy
EXTENSIONS
Values at n>=18 corrected by R. J. Mathar, Sep 04 2010
STATUS
approved