login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011768
Number of Barlow packings that repeat after exactly n layers.
3
0, 1, 1, 1, 1, 2, 3, 6, 7, 16, 21, 43, 63, 129, 203, 404, 685, 1343, 2385, 4625, 8492, 16409, 30735, 59290, 112530, 217182, 415620, 803076, 1545463, 2990968, 5778267, 11201472, 21702686, 42140890, 81830744, 159139498, 309590883, 602935713, 1174779333, 2290915478
OFFSET
1,6
LINKS
Dennis S. Bernstein and Omran Kouba, Counting Colorful Necklaces and Bracelets in Three Colors, arXiv:1901.10703 [math.CO], 2019.
E. Estevez-Rams, C. Azanza-Ricardo, J. Martinez-Garcia and B. Argon-Fernandez, On the algebra of binary codes representing closed-packed staking sequences, Acta Cryst. A61 (2005), 201-208.
E. Esteves-Rams, C. L. Azana Ricardo, B. Aragon Fernandez, An alternative expression for counting the number of close-packaged polytypes, Z. Krist. 220 (2005) 592-595, Table 1
T. J. McLarnan, The numbers of polytypes in close-packings and related structures, Zeits. Krist. 155, 269-291 (1981).
FORMULA
a(n) = A011946(n/4) + A011947((n-2)/4) + A011948(n/2) + A011949(n/2) + A011950((n+1)/2) + A011951(n/2) + A011952(n/2) + A011953(n) + A011954((n-3)/6) + A011955(n/6-1) + A011955(n/6) + A011956(n/3), where the terms with non-integer indices are set to 0. - Andrey Zabolotskiy, Feb 14 2024
MAPLE
with(numtheory); read transforms; M:=200;
A:=proc(N, d) if d mod 3 = 0 then 2^(N/d) else (1/3)*(2^(N/d)+2*cos(Pi*N/d)); fi; end;
E:=proc(N) if N mod 2 = 0 then N*2^(N/2) + add( did(N/2, d)*phi(2*d)*2^(N/(2*d)), d=1..N/2) else (N/3)*(2^((N+1)/2)+2*cos(Pi*(N+1)/2)); fi; end;
PP:=proc(N) (1/(4*N))*(add(did(N, d)*phi(d)*A(N, d), d=1..N)+E(N)); end;
for N from 1 to M do t1[N]:=PP(N); od:
P:=proc(N) local s, d; s:=0; for d from 1 to N do if N mod d = 0 then s:=s+mobius(N/d)*t1[d]; fi; od: s; end; for N from 1 to M do lprint(N, P(N)); od: # N. J. A. Sloane, Aug 10 2006
MATHEMATICA
M = 40;
did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
A[n_, d_] := If[Mod[d, 3] == 0, 2^(n/d), (1/3)(2^(n/d) + 2 Cos[Pi n/d])];
EE[n_] := If[Mod[n, 2] == 0, n 2^(n/2) + Sum[did[n/2, d] EulerPhi[2d]* 2^(n/(2 d)), {d, 1, n/2}], (n/3)(2^((n+1)/2) + 2 Cos[Pi(n+1)/2])];
PP[n_] := PP[n] = (1/(4n))(Sum[did[n, d] EulerPhi[d] A[n, d], {d, 1, n}] + EE[n]);
P[n_] := Module[{s = 0, d}, For[d = 1, d <= n, d++, If[Mod[n, d] == 0, s += MoebiusMu[n/d] PP[d]]]; s];
Array[P, M] (* Jean-François Alcover, Apr 21 2020, from Maple *)
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane and Michael OKeeffe (MOKeeffe(AT)asu.edu)
EXTENSIONS
More terms from N. J. A. Sloane, Aug 10 2006
STATUS
approved