login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135052
Expansion of g.f.: (1-2*x-sqrt(1-4*x+8*x^3-4*x^4))/(2*x^2*(1-x)).
4
1, 1, 3, 7, 19, 51, 143, 407, 1183, 3487, 10415, 31439, 95791, 294191, 909823, 2830943, 8856255, 27839167, 87888767, 278545663, 885903743, 2826612095, 9045147391, 29022168063, 93350430975, 300949170431, 972271227647
OFFSET
0,3
COMMENTS
Sequence is the binomial transform of the aerated large Schroeder numbers A006318. Hankel transform is A060656(n+1).
Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U = (1,1), down steps D = (1,-1) and horizontal steps H(k) = (k,0) for every positive integer k. For instance, for n=3, we have the 7 paths: H(1)H(1)H(1), H(1)H(2), H(2)H(1), H(3), H(1)UD, UDH(1), UH(1)D. - Emanuele Munarini, Mar 14 2011
LINKS
Rodrigo De Castro, Andrés L. Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
Rodrigo De Castro, Andrés L. Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, Scientific Annals of Computer Science, 24(1)(2014), 137-171
FORMULA
a(n) = Sum_{k=0..n, Sum_{j=0..k/2, C(k/2+j, 2j)*C(j)*(1+(-1)^k)/2}}, where C(n) is A000108(n).
G.f.: 1/(1-x-2x^2/(1-x-x^2/(1-x-2x^2/(1-x-x^2/(1-x-2x^2.... (continued fraction). - Paul Barry, Jan 02 2009
a(n) = Sum_{s=0..n} Sum_{m=0..n-2s} (C(s)*binomial(m+2s,m) * binomial(n-2s-1,m-1)), where C(n) is A000108(n). - José Luis Ramírez Ramírez, Apr 19 2015
Conjecture: (n+2)*a(n) +(-5*n-4)*a(n-1) +2*(2*n+1)*a(n-2) +4*(2*n-5)*a(n-3) +12*(-n+3)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Apr 19 2015
a(n) ~ (2+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 20 2015
MATHEMATICA
CoefficientList[Series[(1 - 2 x - Sqrt[1 - 4 x + 8 x^3 - 4 x^4]) / (2 x^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 19 2015 *)
CROSSREFS
Sequence in context: A002426 A011769 A087432 * A198305 A146597 A320734
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 15 2007
STATUS
approved