This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060656 a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1. 10
 1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) is the Hankel transform of A135052. - Paul Barry, Nov 15 2007 a(n+1) is the Hankel transform of the aerated large Schroeder numbers. a(n) and a(n+1) both satisfy the trivial Somos-4 recurrence u(n)=4*u(n-2)^2/u(n-4). Associated with the elliptic curve y^2=1-6x^2+x^4 via Schroeder numbers. - Paul Barry, Dec 08 2009 Hankel transform of A089324. - Paul Barry, Mar 01 2010 a(n+1) is the number of n X n binary matrices that are symmetric about both diagonals (bisymmetric). For the derivation of this result, see the link below. - Dennis P. Walsh, Apr 03 2014 1 followed by {a(n-1)}_(n>=1) is the Somos-3 sequence: b(0)=b(1)=b(2)=1;for n>=3, b(n)=2*b(n-1)*b(n-2)/b(n-3) (cf. comment in A078495). - Vladimir Shevelev, Apr 20 2016 If the Hankel transform is defined as in the link 'Sequence transformations' then a(n) is the Hankel transform of A151374. - Peter Luschny, Nov 30 2016 LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 Peter Luschny, Sequence transformations Dennis P. Walsh, Notes on binary bisymmetric matrices FORMULA a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n). 0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014 0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014 EXAMPLE a(6) = 2*64*16/4 = 512. G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ... MAPLE A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014 MATHEMATICA a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *) nxt[{a_, b_, c_}]:={b, c, (2c*b)/a}; NestList[nxt, {1, 1, 2}, 20][[All, 1]] (* Harvey P. Dale, Nov 26 2017 *) PROG (PARI) { for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009 (PARI) {a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */ CROSSREFS Cf. A002416, A002620, A016116, A038754, A089324, A135052, A262666, A078495, A151374. Sequence in context: A153998 A154001 A154004 * A271234 A061286 A288756 Adjacent sequences:  A060653 A060654 A060655 * A060657 A060658 A060659 KEYWORD nonn,easy AUTHOR Henry Bottomley, Apr 18 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 13:38 EDT 2018. Contains 316361 sequences. (Running on oeis4.)