OFFSET
0,3
COMMENTS
a(n+1) is the Hankel transform of A135052. - Paul Barry, Nov 15 2007
a(n+1) is the Hankel transform of the aerated large Schroeder numbers. a(n) and a(n+1) both satisfy the trivial Somos-4 recurrence u(n)=4*u(n-2)^2/u(n-4). Associated with the elliptic curve y^2=1-6x^2+x^4 via Schroeder numbers. - Paul Barry, Dec 08 2009
Hankel transform of A089324. - Paul Barry, Mar 01 2010
a(n+1) is the number of n X n binary matrices that are symmetric about both diagonals (bisymmetric). For the derivation of this result, see the link below. - Dennis P. Walsh, Apr 03 2014
1 followed by {a(n-1)}_(n>=1) is the Somos-3 sequence: b(0)=b(1)=b(2)=1;for n>=3, b(n)=2*b(n-1)*b(n-2)/b(n-3) (cf. comment in A078495). - Vladimir Shevelev, Apr 20 2016
If the Hankel transform is defined as in the link 'Sequence transformations' then a(n) is the Hankel transform of A151374. - Peter Luschny, Nov 30 2016
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..100
Peter Luschny, Sequence transformations
Dennis P. Walsh, Notes on binary bisymmetric matrices
FORMULA
a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n).
0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
EXAMPLE
a(6) = 2*64*16/4 = 512.
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
MAPLE
MATHEMATICA
a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)
nxt[{a_, b_, c_}]:={b, c, (2c*b)/a}; NestList[nxt, {1, 1, 2}, 20][[All, 1]] (* Harvey P. Dale, Nov 26 2017 *)
PROG
(PARI) { for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
(PARI) {a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Apr 18 2001
STATUS
approved