login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338364
a(n) = Product_{k=1..n} phi(prime(k)-1).
1
1, 1, 1, 2, 4, 16, 64, 512, 3072, 30720, 368640, 2949120, 35389440, 566231040, 6794772480, 149484994560, 3587639869440, 100453916344320, 1607262661509120, 32145253230182400, 771486077524377600, 18515665860585062400, 444375980654041497600, 17775039226161659904000
OFFSET
0,4
EXAMPLE
a(5) = phi(1)*phi(2)*phi(4)*phi(6)*phi(10) = 1*1*2*2*4 = 16.
MAPLE
with(NumberTheory);
f:=n->mul(phi(ithprime(k)-1), k=1..n);
[seq(f(n), n=1..32)];
PROG
(PARI) a(n) = prod(k=1, n, eulerphi(prime(k)-1)); \\ Michel Marcus, Nov 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Marc LeBrun and N. J. A. Sloane, Nov 04 2020
STATUS
approved