login
A271234
2^(p-1) modulo p^3, where p = prime(n).
2
2, 4, 16, 64, 1024, 1899, 1667, 1502, 8856, 10122, 14602, 20573, 27840, 10321, 92638, 86179, 35283, 54291, 126363, 211865, 313171, 338516, 114209, 317375, 598297, 702961, 822971, 1089047, 684521, 928748, 421641, 911761, 739253, 912258, 2634023, 829293, 505855
OFFSET
1,1
COMMENTS
H. S. Vandiver showed that a(n) = 1 if and only if sum{k=1, p-2}(1/k) == 0 (mod p^2), where k runs over the odd numbers up to p-2 (cf. Dickson, 1917, p. 187).
Clearly, if a(n) = 1, then p is a Wieferich prime, i.e., a term of A001220.
LINKS
L. E. Dickson, Fermat's Last Theorem and the Origin and Nature of the Theory of Algebraic Numbers, Annals of Mathematics, Second Series, Vol. 18, No. 4 (1917), 161-187.
PROG
(PARI) a(n) = my(p=prime(n)); lift(Mod(2, p^3)^(p-1))
CROSSREFS
Sequence in context: A154004 A338364 A060656 * A061286 A288756 A019279
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 02 2016
STATUS
approved