OFFSET
1,1
COMMENTS
H. S. Vandiver showed that a(n) = 1 if and only if sum{k=1, p-2}(1/k) == 0 (mod p^2), where k runs over the odd numbers up to p-2 (cf. Dickson, 1917, p. 187).
Clearly, if a(n) = 1, then p is a Wieferich prime, i.e., a term of A001220.
LINKS
Felix Fröhlich, Table of n, a(n) for n = 1..10000
L. E. Dickson, Fermat's Last Theorem and the Origin and Nature of the Theory of Algebraic Numbers, Annals of Mathematics, Second Series, Vol. 18, No. 4 (1917), 161-187.
PROG
(PARI) a(n) = my(p=prime(n)); lift(Mod(2, p^3)^(p-1))
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 02 2016
STATUS
approved