login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271237 Number of ordered ways to write n as u^3 + 2*v^3 + 3*x^3 + 4*y^3 + 5*z^3, where u, v, x, y and z are nonnegative integers. 5
1, 1, 1, 2, 2, 3, 3, 3, 4, 3, 4, 3, 3, 3, 2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 4, 3, 2, 3, 3, 5, 3, 4, 6, 4, 5, 4, 6, 4, 4, 3, 5, 5, 3, 6, 3, 6, 4, 4, 6, 3, 5, 4, 4, 4, 3, 4, 5, 7, 4, 6, 4, 5, 6, 4, 10, 2, 6, 8, 3, 7, 4, 8, 6, 5, 5, 4, 5, 2, 6, 1, 5, 3, 3, 8, 5, 7, 6, 6, 9, 6, 7, 6, 6, 5, 5, 6, 4, 6, 6, 8, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture: We have {u^3+a*v^3+b*x^3+c*y^3+d*z^3: u,v,x,y,z = 0,1,2,...} = {0,1,2,...} whenever (a,b,c,d) is among the following 32 quadruples: (1,2,2,3), (1,2,2,4), (1,2,3,4), (1,2,4,5), (1,2,4,6), (1,2,4,9), (1,2,4,10), (1,2,4,11), (1,2,4,18), (1,3,4,6), (1,3,4,9), (1,3,4,10), (2,2,4,5), (2,2,6,9), (2,3,4,5), (2,3,4,6), (2,3,4,7), (2,3,4,8), (2,3,4,9), (2,3,4,10), (2,3,4,12), (2,3,4,15), (2,3,4,18), (2,3,5,6), (2,3,6,12), (2,3,6,15), (2,4,5,6), (2,4,5,8), (2,4,5,9), (2,4,5,10), (2,4,6,7), (2,4,7,10).
In particular, this implies that a(n) > 0 for all n = 0,1,2,... We guess that a(n) = 1 only for n = 0, 1, 2, 18, 23, 79, 100.
If {m*u^3+a*v^3+b*x^3+c*y^3+d*z^3: u,v,x,y,z = 0,1,2,...} = {0,1,2,...} with 1 <= m <= a <= b <= c <= d, then m = 1, and we can show that (a,b,c,d) must be among the 32 quadruples listed in the conjecture (cf. Theorem 1.2 of the linked 2017 paper).
Conjecture verified for all the 32 quadruples up to 10^11. - Mauro Fiorentini, Jul 09 2023
It is known that there are exactly 54 quadruples (a,b,c,d) with 1 <= a <= b <= c <= d such that {a*w^2+b*x^2+c*y^2+d*z^2: w,x,y,z = 0,1,2,...} = {0,1,2,...}.
See also A271099 and A271169 for conjectures refining Waring's problem.
We also conjecture that if P(u,v,x,y,z) is one of the four polynomials u^6+v^3+2*x^3+4*y^3+5*z^3 and a*u^6+v^3+2*x^3+3*y^3+4*z^3 (a = 5,8,12) then any natural number can be written as P(u,v,x,y,z) with u,v,x,y,z nonnegative integers. - Zhi-Wei Sun, Apr 06 2016
Conjecture verified for all the 4 polynomials up to 10^11. - Mauro Fiorentini, Jul 09 2023
REFERENCES
S. Ramanujan, On the expression of a number in the form a*x^2 + b*y^2 + c*z^2 + d*w^2, Proc. Cambridge Philos. Soc. 19(1917), 11-21.
LINKS
L. E. Dickson, Quaternary quadratic forms representing all integers, Amer. J. Math. 49(1927), 39-56.
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(2) = 1 since 2 = 0^3 + 2*1^3 + 3*0^3 + 4*0^3 + 5*0^3.
a(18) = 1 since 18 = 2^3 + 2*1^3 + 3*1^3 + 4*0^3 + 5*1^3.
a(23) = 1 since 23 = 0^3 + 2*2^3 + 3*1^3 + 4*1^3 + 5*0^3.
a(79) = 1 since 79 = 1^3 + 2*3^3 + 3*2^3 + 4*0^3 + 5*0^3.
a(100) = 1 since 100 = 2^3 + 2*1^3 + 3*3^3 + 4*1^3 + 5*1^3.
MATHEMATICA
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
Do[r=0; Do[If[CQ[n-5z^3-4y^3-3x^3-2v^3], r=r+1], {z, 0, (n/5)^(1/3)}, {y, 0, ((n-5z^3)/4)^(1/3)}, {x, 0, ((n-5z^3-4y^3)/3)^(1/3)}, {v, 0, ((n-5z^3-4y^3-3x^3)/2)^(1/3)}]; Print[n, " ", r]; Continue, {n, 0, 100}]
CROSSREFS
Sequence in context: A262956 A073734 A231335 * A062558 A072789 A126302
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 02 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:11 EDT 2024. Contains 371935 sequences. (Running on oeis4.)