login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231335
Number of distinct Fibonacci numbers in rows of triangle A230871.
4
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 5, 4, 3, 4, 6, 4, 5, 4, 5, 6, 5, 4, 6, 7, 4, 5
OFFSET
0,3
COMMENTS
a(n) = Sum_{k=1..A231331(n)} A010056(A231330(n,k));
a(n) > 1 for n > 1.
EXAMPLE
a(0) = #{0} = 1;
a(1) = #{1} = 1;
a(2) = #{1, 3} = 2;
a(3) = #{2, 8} = 2;
a(4) = #{3, 5, 21} = 3;
a(5) = #{5, 13, 55} = 3;
a(6) = #{8, 34, 144} = 3;
a(7) = #{13, 55, 89, 377} = 4;
a(8) = #{21, 233, 987} = 3;
a(9) = #{34, 610, 2584} = 3;
a(10) = #{55, 89, 377, 1597, 6765} = 5;
a(11) = #{89, 377, 4181, 17711} = 4;
a(12) = #{144, 10946, 46368} = 3;
a(13) = #{233, 1597, 28657, 121393} = 4;
a(14) = #{377, 987, 1597, 6765, 75025, 317811} = 6;
a(15) = #{610, 10946, 196418, 832040} = 4;
a(16) = #{987, 4181, 6765, 514229, 2178309} = 5.
PROG
(Haskell)
a231335 = length . filter ((== 1) . a010056) . a231330_row
(PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
vf(v) = #select(isfib, Set(v));
lista(nn) = my(va=[0], vb=[1]); print1(vf(va), ", "); print1(vf(vb), ", "); for (n=2, nn, v = vector(2^(n-1), k, j=(k+1)\2; i=(j+1)\2; y=vb[j]; x=va[i]; if (k%2, y+x, 3*y-x)); print1(vf(v), ", "); va = vb; vb = v; ); \\ Michel Marcus, Sep 23 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Reinhard Zumkeller, Nov 07 2013
EXTENSIONS
a(19)-a(25) from Michel Marcus, Sep 23 2023
STATUS
approved