Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 23 2023 07:31:22
%S 1,1,2,2,3,3,3,4,3,3,5,4,3,4,6,4,5,4,5,6,5,4,6,7,4,5
%N Number of distinct Fibonacci numbers in rows of triangle A230871.
%C a(n) = Sum_{k=1..A231331(n)} A010056(A231330(n,k));
%C a(n) > 1 for n > 1.
%e a(0) = #{0} = 1;
%e a(1) = #{1} = 1;
%e a(2) = #{1, 3} = 2;
%e a(3) = #{2, 8} = 2;
%e a(4) = #{3, 5, 21} = 3;
%e a(5) = #{5, 13, 55} = 3;
%e a(6) = #{8, 34, 144} = 3;
%e a(7) = #{13, 55, 89, 377} = 4;
%e a(8) = #{21, 233, 987} = 3;
%e a(9) = #{34, 610, 2584} = 3;
%e a(10) = #{55, 89, 377, 1597, 6765} = 5;
%e a(11) = #{89, 377, 4181, 17711} = 4;
%e a(12) = #{144, 10946, 46368} = 3;
%e a(13) = #{233, 1597, 28657, 121393} = 4;
%e a(14) = #{377, 987, 1597, 6765, 75025, 317811} = 6;
%e a(15) = #{610, 10946, 196418, 832040} = 4;
%e a(16) = #{987, 4181, 6765, 514229, 2178309} = 5.
%o (Haskell)
%o a231335 = length . filter ((== 1) . a010056) . a231330_row
%o (PARI) isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8);
%o vf(v) = #select(isfib, Set(v));
%o lista(nn) = my(va=[0], vb=[1]); print1(vf(va), ", "); print1(vf(vb), ", "); for (n=2, nn, v = vector(2^(n-1), k, j=(k+1)\2; i=(j+1)\2; y=vb[j]; x=va[i]; if (k%2, y+x, 3*y-x)); print1(vf(v), ", "); va = vb; vb = v;); \\ _Michel Marcus_, Sep 23 2023
%Y Cf. A000045, A010056, A230871, A231330, A231331.
%K nonn,more
%O 0,3
%A _Reinhard Zumkeller_, Nov 07 2013
%E a(19)-a(25) from _Michel Marcus_, Sep 23 2023