OFFSET
2,2
COMMENTS
All terms shown are prime powers, but this does not hold for all n. For n > 2, a(n) is divisible by A064740(n).
The GCD of A064413(578)=620 and A064413(579)=610 is 10. This is the first time the GCD is not a prime-power. - N. J. A. Sloane, Mar 30 2015
From Jianing Song, Sep 27 2023: (Start)
Based on the data of A064413, one finds that a(n) is not a prime power for 39 n's not exceeding 10000. Specifically, we have:
- a(n) = 6 for n = 968, 2236, 3330, 3496, 7773, 8957;
- a(n) = 10 for n = 579, 1221, 1428, 1604, 2092, 2872, 3048, 4434, 4697, 7355, 7448, 8923;
- a(n) = 14 for n = 9018, 2126, 8324;
- a(n) = 15 for n = 9369, 2406, 4085, 4194, 4887, 5846, 6484, 6846, 7939, 8746;
- a(n) = 20 for n = 2935, 5446, 5910, 9093;
- a(n) = 21 for n = 7468;
- a(n) = 26 for n = 1065, 5148;
- a(n) = 38 for n = 2117.
What is the first n such that a(n) = 12? And for a(n) = 18? (End)
LINKS
Jianing Song, Table of n, a(n) for n = 2..10000 (based on the data of A064413; terms n = 2..1000 from T. D. Noe)
J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, Exper. Math. 11 (2002), 437-446; arXiv:math/0204011 [math.NT], 2002.
EXAMPLE
From Michael De Vlieger, Sep 27 2023: (Start)
Let b(n) = A064413(n):
a(11068) = 12 since gcd(b(11067), b(11068)) = gcd(11484, 11472) = 12,
a(58836) = 18 since gcd(b(58835), b(58836)) = gcd(60786, 60678) = 18. (End)
MATHEMATICA
t = {1, 2}; Join[{1}, Table[k = 3; While[MemberQ[t, k] || (y = GCD[Last[t], k]) == 1, k++]; AppendTo[t, k]; y, {91}]] (* Jayanta Basu, Jul 09 2013 *)
PROG
(Haskell)
a073734 n = a073734_list !! (n-2)
a073734_list = zipWith gcd a064413_list $ tail a064413_list
-- Reinhard Zumkeller, Sep 17 2001
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
David Wasserman, Aug 06 2002
STATUS
approved