login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010056
Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.
64
1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
a(A000045(n)) = 1; a(A001690(n)) = 0. - Reinhard Zumkeller, Oct 10 2013
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016
LINKS
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
D. Bailey et al., On the binary expansions of algebraic numbers, Journal de Théorie des Nombres de Bordeaux (2004), Volume: 16, Issue: 3, page 487-518.
Wikipedia, Fibonacci number
FORMULA
G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007
MAPLE
a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
seq(a(n), n=0..144); # Alois P. Heinz, Dec 06 2020
MATHEMATICA
Join[{1}, With[{fibs=Fibonacci[Range[15]]}, If[MemberQ[fibs, #], 1, 0]& /@Range[100]]] (* Harvey P. Dale, May 02 2011 *)
PROG
(PARI) a(n)=my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
(Haskell)
import Data.List (genericIndex)
a010056 = genericIndex a010056_list
a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
-- Reinhard Zumkeller, Oct 10 2013
(Python)
from sympy.ntheory.primetest import is_square
def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023
CROSSREFS
Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).
Sequence in context: A121802 A156241 A156254 * A283437 A155898 A181650
KEYWORD
nonn,easy
STATUS
approved