Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #92 Feb 01 2024 05:55:29
%S 1,1,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
%T 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.
%C Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - _Hieronymus Fischer_, May 14 2007
%C a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - _Hieronymus Fischer_, May 17 2007
%C a(A000045(n)) = 1; a(A001690(n)) = 0. - _Reinhard Zumkeller_, Oct 10 2013
%C Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - _Jeffrey Shallit_, May 14 2016
%H Reinhard Zumkeller, <a href="/A010056/b010056.txt">Table of n, a(n) for n = 0..10000</a>
%H Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, <a href="https://arxiv.org/abs/1711.10807">A Taxonomy of Morphic Sequences</a>, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
%H D. Bailey et al., <a href="https://doi.org/10.5802/jtnb.457">On the binary expansions of algebraic numbers</a>, Journal de Théorie des Nombres de Bordeaux (2004), Volume: 16, Issue: 3, page 487-518.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci number</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F G.f.: (Sum_{k>=0} x^A000045(k)) - x. - _Hieronymus Fischer_, May 17 2007
%p a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
%p seq(a(n), n=0..144); # _Alois P. Heinz_, Dec 06 2020
%t Join[{1},With[{fibs=Fibonacci[Range[15]]},If[MemberQ[fibs,#],1,0]& /@Range[100]]] (* _Harvey P. Dale_, May 02 2011 *)
%o (PARI) a(n)=my(k=n^2);k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ _Charles R Greathouse IV_, Jul 30 2012
%o (Haskell)
%o import Data.List (genericIndex)
%o a010056 = genericIndex a010056_list
%o a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
%o ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
%o -- _Reinhard Zumkeller_, Oct 10 2013
%o (Python)
%o from sympy.ntheory.primetest import is_square
%o def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # _Chai Wah Wu_, Mar 30 2023
%Y Cf. A000045, A001690, A072649, A104162, A108852, A124091, A130233, A130234.
%Y Decimal expansion of Fibonacci binary is in A084119.
%Y Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
%Y Cf. A079586 (Dirich. g.f. at s=1).
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_