login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288756
Numerator of the volume of the "monic slice" of the d-th Chern-Vaaler star body.
5
2, 4, 16, 64, 1024, 16384, 524288, 16777216, 4294967296, 1099511627776, 562949953421312, 288230376151711744, 590295810358705651712, 1208925819614629174706176, 4951760157141521099596496896, 20282409603651670423947251286016, 1329227995784915872903807060280344576
OFFSET
1,1
COMMENTS
The "monic slice" corresponds to integer polynomials of degree at most d, and of Mahler's measure at most 1. See Grizzard and Gunther (2016) section 2.1. For the volume of the d-th Chern-Vaaler star body, see A286522, A286523, A286524.
LINKS
S.-J. Chern and J.D. Vaaler, The distribution of values of Mahler's measure, J. Reine. Angew. Math., 540 (2001), 1-47.
R, Grizzard and J. Gunther, Slicing the stars: counting algebraic numbers, integers, and units by degree and height, arXiv:1609.08720 [math.NT] 2016.
FORMULA
Numerator of 2^(d - e) * (e!)^-1 * Product_{j = 1..e} (2*j/(2*j + 1))^(d - 2 j)) * Sum_{j = 0..e} ((-1)^j * (d - 2*j)^e * binomial(e, j)), where e = floor((d-1)/2).
Floor(a(n)/A288757(n)) = A288758(n).
EXAMPLE
2, 4, 16/3, 64/9, 1024/135, 16384/2025, 524288/70875, 16777216/2480625, 4294967296/781396875, 1099511627776/246140015625, ...
MATHEMATICA
vol[d_] := (e = Floor[(d - 1)/2]; 2^(d - e) (e!)^-1 Product[(2 j/(2 j + 1))^(d - 2 j), {j, 1, e}] Sum[(-1)^j (d - 2 j)^e Binomial[e, j], {j, 0, e}]); Table[ Numerator[ vol[d]], {d, 1, 17}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jonathan Sondow, Jun 15 2017
STATUS
approved