login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of the volume of the "monic slice" of the d-th Chern-Vaaler star body.
5

%I #14 Jun 16 2017 02:51:37

%S 2,4,16,64,1024,16384,524288,16777216,4294967296,1099511627776,

%T 562949953421312,288230376151711744,590295810358705651712,

%U 1208925819614629174706176,4951760157141521099596496896,20282409603651670423947251286016,1329227995784915872903807060280344576

%N Numerator of the volume of the "monic slice" of the d-th Chern-Vaaler star body.

%C The "monic slice" corresponds to integer polynomials of degree at most d, and of Mahler's measure at most 1. See Grizzard and Gunther (2016) section 2.1. For the volume of the d-th Chern-Vaaler star body, see A286522, A286523, A286524.

%H S.-J. Chern and J.D. Vaaler, <a href="https://doi.org/10.1515/crll.2001.084">The distribution of values of Mahler's measure</a>, J. Reine. Angew. Math., 540 (2001), 1-47.

%H R, Grizzard and J. Gunther, <a href="https://arxiv.org/abs/1609.08720">Slicing the stars: counting algebraic numbers, integers, and units by degree and height</a>, arXiv:1609.08720 [math.NT] 2016.

%F Numerator of 2^(d - e) * (e!)^-1 * Product_{j = 1..e} (2*j/(2*j + 1))^(d - 2 j)) * Sum_{j = 0..e} ((-1)^j * (d - 2*j)^e * binomial(e, j)), where e = floor((d-1)/2).

%F Floor(a(n)/A288757(n)) = A288758(n).

%e 2, 4, 16/3, 64/9, 1024/135, 16384/2025, 524288/70875, 16777216/2480625, 4294967296/781396875, 1099511627776/246140015625, ...

%t vol[d_] := (e = Floor[(d - 1)/2]; 2^(d - e) (e!)^-1 Product[(2 j/(2 j + 1))^(d - 2 j), {j, 1, e}] Sum[(-1)^j (d - 2 j)^e Binomial[e, j], {j, 0, e}]); Table[ Numerator[ vol[d]], {d, 1, 17}]

%Y Cf. A286522, A286523, A286524, A288757, A288758.

%K nonn,frac

%O 1,1

%A _Jonathan Sondow_, Jun 15 2017