login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278913
a(n) is the smallest number k with prime sum of divisors such that tau(k) = n-th prime.
2
2, 4, 16, 64, 9765625, 4096, 65536, 262144, 1471383076677527699142172838322885948765175969, 10264895304762966931257013446474591264089923314972889033759201, 1073741824, 18701397461209715023927088008788055619800417991632621566284510161
OFFSET
1,1
COMMENTS
tau(n) = A000005(n) = the number of divisors of n.
a(11) = 1073741824; a(n) > A023194(10000) = 5896704025969 for n = 9, 10 and n >= 12.
LINKS
FORMULA
a(n) = A123487(n)^(prime(n)-1). - Davin Park, Dec 10 2016
EXAMPLE
a(3) = 16 because 16 is the smallest number with prime values of sum of divisors (sigma(16) = 31) such that tau(16) = 5 = 3rd prime.
MATHEMATICA
A278913[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]^(Prime[n] - 1) (* Davin Park, Dec 28 2016 *)
PROG
(Magma) A278913:=func<n|exists(r){k:k in[1..10000000] | IsPrime(SumOfDivisors(k)) and NumberOfDivisors(k) eq NthPrime(n)} select r else 0>; [A278913(n): n in[1..8]]
(PARI) a(n) = {my(k=1); while(! (isprime(sigma(k)) && isprime(p=numdiv(k)) && (primepi(p) == n)), k++); k; } \\ Michel Marcus, Dec 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Nov 30 2016
EXTENSIONS
More terms from Davin Park, Dec 08 2016
STATUS
approved