

A123487


Smallest prime q such that (q^p1)/(q1) is prime, where p = prime(n); or 0 if no such prime q exists.


7



2, 2, 2, 2, 5, 2, 2, 2, 113, 151, 2, 61, 53, 89, 5, 307, 19, 2, 491, 3, 11, 271, 41, 2, 271, 359, 3, 2, 79, 233, 2, 7, 13, 11, 5, 29, 71, 139, 127, 139, 2003, 5, 743, 673, 593, 383, 653, 661, 251, 6389, 2833, 223, 163, 37, 709, 131, 41, 2203, 941, 2707, 13, 1283, 383
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Corresponding primes (q^p1)/(q1) are listed in A123488.
Conjecture: Never is a(n) equal to 0.
Records: 2, 5, 113, 151, 307, 491, 2003, 6389, 7883, 11813, 18587, 31721, 40763, ... ;
First occurrence of the k_th prime: 1, 20, 5, 32, 21, 33, 81, 17, ... ;
Positions where two occurs: 1, 2, 3, 4, 6, 7, 8, 11, 18, 24, 28, 31, 98, 111, ... ;
Positions where three occurs: 20, 27, 100, 182, ... ;
Positions where five occurs: 5, 15, 35, 42, 114, 158, ... ; etc. (End)
Jones & Zvonkin conjecture (as did Robert G. Wilson v above) that a(n) > 0 for all n.  Charles R Greathouse IV, Jul 23 2021


LINKS



MATHEMATICA

f[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]; Array[f, 63](* Davin Park, Dec 28 2016 and Robert G. Wilson v, Dec 28 2016 *)


PROG

(PARI) a(n) = {my(x = 2); while (!isprime(polcyclo(prime(n), x)), x= nextprime(x+1)); x; } \\ Michel Marcus, Dec 10 2016


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



