login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362034
Triangle read by rows: T(n,0) = T(n,n) = 2, 0 < k < n: T(n,k) = smallest prime not less than T(n-1,k) + T(n-1,k-1).
4
2, 2, 2, 2, 5, 2, 2, 7, 7, 2, 2, 11, 17, 11, 2, 2, 13, 29, 29, 13, 2, 2, 17, 43, 59, 43, 17, 2, 2, 19, 61, 103, 103, 61, 19, 2, 2, 23, 83, 167, 211, 167, 83, 23, 2, 2, 29, 107, 251, 379, 379, 251, 107, 29, 2, 2, 31, 137, 359, 631, 761, 631, 359, 137, 31, 2
OFFSET
0,1
COMMENTS
In order to get the next number in the row, you add the two numbers above it, and find the next prime.
3 is the only prime number that never shows up.
5 is the only prime number that only shows up once; every prime number above 5 shows up at least twice.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0..150, flattened)
FORMULA
T(n,k) = A007918(T(n-1,k-1) + T(n-1,k)) for 0 < k < n. - Robert Israel, Apr 05 2023
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8 9 10
n=0: 2
n=1: 2 2
n=2: 2 5 2
n=3: 2 7 7 2
n=4: 2 11 17 11 2
n=5: 2 13 29 29 13 2
n=6: 2 17 43 59 43 17 2
n=7: 2 19 61 103 103 61 19 2
n=8: 2 23 83 167 211 167 83 23 2
n=9: 2 29 107 251 379 379 251 107 29 2
n=10: 2 31 137 359 631 761 631 359 137 31 2
MAPLE
for n from 0 to 10 do
T[n, 0]:= 2: T[n, n]:= 2:
for k from 1 to n-1 do
T[n, k]:= nextprime(T[n-1, k-1]+T[n-1, k]-1)
od
od:
for n from 0 to 10 do
seq(T[n, k], k=0..n)
od; # Robert Israel, Apr 05 2023
MATHEMATICA
T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2023, after Maple *)
PROG
(PARI) T(n, k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(T(n-1, k-1) + T(n-1, k))))); \\ Michel Marcus, Apr 07 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jack Braxton, Apr 05 2023
STATUS
approved