login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224254
Full cycle lengths in the Collatz (3x+1) problem when the negative integers are used.
2
2, 2, 2, 2, 5, 2, 5, 2, 5, 5, 2, 2, 5, 5, 2, 2, 18, 5, 5, 5, 18, 2, 18, 2, 18, 5, 5, 5, 2, 2, 18, 2, 18, 18, 5, 5, 18, 5, 2, 5, 18, 18, 2, 2, 18, 18, 5, 2, 18, 18, 5, 5, 2, 5, 18, 5, 2, 2, 2, 2, 18, 18, 5, 2, 2, 18, 18, 18, 2, 5, 2, 5, 18, 18, 5, 5, 2, 2, 2, 5, 5
OFFSET
1,1
COMMENTS
There are other cycles of lengths 2, 5 and 18 if negative integers are used. In Z, it is conjectured that the five values of cycle are 1, 2, 3, 5 and 18 (see A121510).
EXAMPLE
a(1) = 2 because the cycle -1 -> -2 -> -1... contains 2 distinct terms;
a(5) = 5 because the cycle -5 -> -14 -> -7->-20 -> -5 ... contains 5 distinct terms;
a(17) = 18 because the cycle -17 -> -50 -> -25->-74 -> -37 -> -110 -> -55->-164 -> -82 -> -41 -> -122->-61 -> -182 -> -91 -> -272->-136 -> -68 -> -34 -> -17... contains 18 distinct terms.
PROG
(Python)
import sympy
def A224254(n):
return next(sympy.cycle_length(lambda x:3*x+1 if x%2 else x//2, -n))[0] # Pontus von Brömssen, Jan 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Apr 02 2013
EXTENSIONS
Data corrected by Pontus von Brömssen, Jan 24 2021
STATUS
approved