login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224252
Nonpalindromic n such that the factorizations of n and its digital reverse differ only for the exponents order.
2
277816, 618772, 14339143, 34193341, 1125355221, 1225535211, 2613391326, 6231933162, 26157457326, 62375475162, 100504263021, 102407325111, 111523704201, 120362405001, 144326261443, 275603902756, 277816277816, 344162623441, 392739273927, 392875758639
OFFSET
1,1
COMMENTS
Subset of A110751 and A110819.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..34 (terms < 2*10^12)
EXAMPLE
277816 and its reverse 618772 are in the sequence since 277816 = 2^3*7*11^2*41 and 618772 = 2^2*7^3*11*41 have the same prime divisors and the same exponents (1,1,2,3).
MATHEMATICA
Do[fn = FactorInteger@n; fr = FactorInteger@ FromDigits@ Reverse@ IntegerDigits@n; If[fn != fr && First /@ fn == First /@ fr && Sort[Last /@ fn] == Sort[Last /@ fr], Print[n]], {n, 15*10^6}]
PROG
(Python)
from sympy import primefactors, factorint
A224252 = [n for n in range(1, 10**6) if n != int(str(n)[::-1]) and primefactors(n) == primefactors(int(str(n)[::-1])) and sorted(factorint(n).values()) == sorted(factorint(int(str(n)[::-1])).values())] # Chai Wah Wu, Aug 21 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Apr 02 2013
STATUS
approved