login
A224249
Number of permutations in S_n containing exactly 2 increasing subsequences of length 4.
1
0, 0, 0, 0, 4, 63, 665, 5982, 49748, 396642, 3089010, 23745117, 181282899, 1379847138, 10496697584, 79928658289, 609847716251, 4665446254886, 35801131210504, 275638351332190, 2129514056354378, 16509890253429971, 128449405928666831, 1002835093225654416, 7856166360951643384
OFFSET
1,5
LINKS
Andrew R. Conway and Anthony J. Guttmann, Counting occurrences of patterns in permutations, arXiv:2306.12682 [math.CO], 2023. See pp. 16, 24, 25.
B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, Adv. in Appl. Math. 50 (2013), 356-366.
MAPLE
# programs can be obtained from the Nakamura and Zeilberger link.
CROSSREFS
Sequence in context: A102197 A094323 A286438 * A361140 A335112 A227619
KEYWORD
nonn
AUTHOR
Brian Nakamura, Apr 02 2013
STATUS
approved