login
A286438
Number of ways to tile an n X n X n triangular area with three 2 X 2 X 2 triangular tiles and an appropriate number (= n^2-12) of 1 X 1 X 1 tiles.
8
0, 4, 63, 494, 2247, 7396, 19739, 45518, 94259, 179732, 321031, 543774, 881423, 1376724, 2083267, 3067166, 4408859, 6205028, 8570639, 11641102, 15574551, 20554244, 26791083, 34526254, 44033987, 55624436, 69646679, 86491838, 106596319, 130445172, 158575571, 191580414
OFFSET
3,2
COMMENTS
Rotations and reflections of tilings are counted. If they are to be ignored, see A286445. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061996.
LINKS
Heinrich Ludwig, Example for n=4
FORMULA
a(n) = (n^6 - 9*n^5 + 6*n^4 + 153*n^3 - 361*n^2 - 564*n + 1848)/6 for n>=4.
G.f.: x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7. - Colin Barker, May 11 2017
EXAMPLE
There are 4 ways of tiling a triangular area of side 4 with three tiles of side 2 and an appropriate number (= 4) of tiles of side 1. See example in links section.
PROG
(PARI) concat(0, Vec(x^4*(4 + 35*x + 137*x^2 - 28*x^3 - 24*x^4 - 15*x^5 + 11*x^6) / (1 - x)^7 + O(x^30))) \\ Colin Barker, May 11 2017
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, May 11 2017
STATUS
approved