|
|
A061996
|
|
Number of ways to place 3 nonattacking kings on an n X n board.
|
|
19
|
|
|
0, 0, 0, 8, 140, 964, 3920, 11860, 29708, 65240, 129984, 240240, 418220, 693308, 1103440, 1696604, 2532460, 3684080, 5239808, 7305240, 10005324, 13486580, 17919440, 23500708, 30456140, 39043144, 49553600, 62316800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 4*x^3*(2 + 21*x + 38*x^2 - 42*x^3 + 11*x^4)/(1 - x)^7.
Recurrence: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7), n >= 8.
a(n) = (n-1)*(n-2)*(n^4 + 3*n^3 - 20*n^2 - 30*n + 132)/6, n >= 1.
E.g.f.: -44 + (1/6)*(264 -264*x +132*x^2 -36*x^3 +38*x^4 +15*x^5 +x^6)*exp(x). - G. C. Greubel, Apr 29 2022
|
|
MATHEMATICA
|
CoefficientList[Series[4x^3(2 +21x +38x^2 -42x^3 +11x^4)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
|
|
PROG
|
(SageMath) [(n-1)*(n-2)*(n^4+3*n^3-20*n^2-30*n+132)/6 -44*bool(n==0) for n in (0..40)] # G. C. Greubel, Apr 29 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
|
|
STATUS
|
approved
|
|
|
|