OFFSET
5,2
COMMENTS
Rotations and reflections of tilings are counted. Tiles of the same size are not distinguishable.
For an analogous problem concerning square tiles, see A061998.
LINKS
Heinrich Ludwig, Table of n, a(n) for n = 5..100
Heinrich Ludwig, Illustration of tiling a 6X6X6 area
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
a(n) = (n^10 -15*n^9 +5*n^8 +930*n^7 -3325*n^6 -19863*n^5 +109915*n^4 +155100*n^3 -1365876*n^2 -191592*n +5981760)/120 for n >= 6.
G.f.: 6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11. - Colin Barker, May 12 2017
EXAMPLE
There are 546 ways of tiling a triangular area of side 6 with 5 tiles of side 2 and an appropriate number (= 16) of tiles of side 1. See illustration in links section.
PROG
(PARI) concat(0, Vec(6*x^6*(91 + 1343*x + 5429*x^2 + 1703*x^3 - 4419*x^4 - 789*x^5 + 2379*x^6 - 627*x^7 - 76*x^8 - 14*x^9 + 20*x^10) / (1 - x)^11 + O(x^40))) \\ Colin Barker, May 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, May 12 2017
STATUS
approved