login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378966
Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
0
0, 546, 132840, 27132714, 5400270960, 1070181351954, 211922939930520, 41960773653737946, 8308058686721274720, 1644954930586205575554, 325692811387179035829960, 64485533166912548464047114, 12767809924078284782564882640, 2527961881127459862292727058546, 500523684710829430645198931758200
OFFSET
0,2
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
FORMULA
a(n) = (A377726(n,1) * A377726(n,2))/2.
EXAMPLE
For n=2, the short leg is A377726(2,1) = 13 and the long leg so the semiperimeter is then a(2) = (13 * 84)/2 =546.
MATHEMATICA
ar[n_]:=ar[n]= Module[{ra}, ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2; {ra(ra-1)(2ra-1)}]; areas={}; Do[areas=Join[areas, FullSimplify[ar[n]]], {n, 0, 16}]; areas
CROSSREFS
KEYWORD
nonn,easy,new
STATUS
approved