login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378964
a(n) is the least prime of the form p^2 + n*q^2 where p and q are primes, or -1 if there are none.
0
13, 17, 31, 41, 29, 73, 37, 41, 61, 89, 53, 73, 61, 151, 109, 73, 157, 97, 101, 89, 109, 97, 101, 241, 109, 113, 157, 137, -1, 241, 149, 137, 157, 257, 149, 193, 157, 367, 181, 281, 173, 193, 181, 421, 229, 193, 197, 241, 317, 499, 229, 233, -1, 241, 229, 233, 277, 241, -1, 409, 269, 257, 277
OFFSET
1,1
COMMENTS
Green and Sawhney (see link) proved that there are infinitely many such primes if n == 0 or 4 (mod 6).
If n is odd, p or q must be 2.
If n == 2 (mod 3), p or q must be 3.
Thus if n == 5 (mod 6), the only possible primes of this form are 9 + 4 n and 4 + 9 n.
LINKS
B. Green and M. Sawhney, Primes of the form p^2 + n q^2, arXiv:2410.04189 [math.NT], 2024.
EXAMPLE
a(6) = 73 because 73 = 7^2 + 6 * 2^2 is the least prime of the form p^2 + 6 * q^2.
MAPLE
f:= proc(n) uses priqueue;
local pq, p, t;
if n mod 6 = 5 then
if isprime(3^2 + n * 2^2) then return 3^2 + n*2^2
elif isprime(2^2 + n*3^2) then return 2^2 + n*3^2
else return -1
fi fi;
initialize(pq);
insert([-9 - 4*n, 3, 2], pq);
insert([-4 - 9*n, 2, 3], pq);
if n mod 3 = 2 then
do
t:= extract(pq);
if isprime(-t[1]) then return -t[1] fi;
if t[2] = 3 then p:= nextprime(t[3]); if p = 3 then p:= 5 fi; insert([-9 - n*p^2, 3, p], pq) fi;
if t[3] = 3 then p:= nextprime(t[2]); if p = 3 then p:= 5 fi; insert([-p^2 - n*9, p, 3], pq) fi;
od
else
do
t:= extract(pq);
if isprime(-t[1]) then return -t[1] fi;
if t[3] = 2 then p:= nextprime(t[2]); insert([-p^2 - n*4 , p, 2], pq) fi;
if t[2] = 2 or n::even then
p:= nextprime(t[3]); insert([-t[2]^2 - n*p^2, t[2], p], pq)
fi;
od
fi
end proc:
map(f, [$1..200]);
CROSSREFS
Cf. A111199 (a(n) = 9+4*n).
Sequence in context: A108388 A083983 A129338 * A138535 A116671 A062338
KEYWORD
sign,look,new
AUTHOR
Robert Israel, Dec 12 2024
STATUS
approved