login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377016
Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
4
1, 28, 861, 28680, 970921, 32963140, 1119662181, 38034888528, 1292062686481, 43892073946540, 1491038320325421, 50651410052600280, 1720656899012149561, 58451683130389395028, 1985636569382856677301, 67453191675004485098400, 2291422880375627492063521, 77840924741066359629967420
OFFSET
0,2
COMMENTS
a(0) = 1 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
FORMULA
a(n) = (A377011(n,1) + A377011(n,2) + A377011(n,3))/2.
a(n) = (A002315(n) + 2*A008844(n) - 1)/2.
G.f.: (1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)). - Andrew Howroyd, Oct 14 2024
EXAMPLE
For n=2, the short leg is A002315(2) = 41 and the hypotenuse is A008844(n) = 841 so the semiperimeter is then a(2) = (41 + 840 + 841)/2 = 861.
MATHEMATICA
s[n_]:=s[n]=Module[{a, b}, a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2; b=(a^2-1)/2; {(a+2b+1)/2}]; semis={}; Do[semis=Join[semis, FullSimplify[s[n]]], {n, 0, 17}]; semis
PROG
(PARI) Vec((1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)) + O(x^20)) \\ Andrew Howroyd, Oct 14 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved