The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078522 Numbers n such that (n+1)*(2*n+1) is a perfect square. 11
 0, 24, 840, 28560, 970224, 32959080, 1119638520, 38034750624, 1292061882720, 43892069261880, 1491038293021224, 50651409893459760, 1720656898084610640, 58451683124983302024, 1985636569351347658200, 67453191674820837076800, 2291422880374557112953024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, both n+1 and 2*n+1 are perfect squares. The square roots of (n+1)*(2*n+1) are in A046176. Also numbers n such that 3*A000217(n) + A000217(n+1) is a perfect square. - Bruno Berselli, Nov 17 2016 From Sergey Pavlov, Mar 14 2017: (Start) The sequence of areas k(n)*q(n)/2, of the ordered Pythagorean triples (k(n), q(n) = k(n) + 2, c(n)) with k(1)=0, q(1)=2, c(1)=0, a(1)=0, and k(2)=6, q(2)=8, c(2)=10, a(2)=24 (conjectured). Conjecture: let f(n) be a sequence of form x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + v, z(n)) with x(1)=0, y(1)=v, z(1)=0, f(1)=0, where v is an even number. Then there exists such subset p(i) that p(1) = 0, p(2) = 24*(v/2)^2, for any i > 2, p(i) = 34*p(i-1) - p(i-2) + 24*(v/2)^2, and any p(i) is a term of the above sequence f(n) (see also the first formula by Benoit Cloitre in the Formula section). (End) LINKS Colin Barker, Table of n, a(n) for n = 1..650 Index entries for linear recurrences with constant coefficients, signature (35,-35,1). FORMULA From Benoit Cloitre, Jan 19 2003: (Start) a(1)=0, a(2)=24; for n > 2, a(n) = 34*a(n-1) - a(n-2) + 24. a(n) = floor(A*B^n), where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2). a(n) = A008844(n) - 1. (End) From R. J. Mathar, Sep 21 2011: (Start) G.f.: 24*x^2/( (1-x)*(1-34*x+x^2) ). a(n) = 24*A029546(n-2). (End) a(n) = (A001653(n)^2 - 1)/2 = A002315(n-1)^2 - 1. - Tomohiro Yamada, Sep 15 2019 a(n) = (3/4)*(ChebyshevT(n, 17) - 16*Chebyshev(n-1, 17) - 1). - G. C. Greubel, Jan 13 2020 MAPLE seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020 MATHEMATICA RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n, 20}] Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x, 0, 20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *) Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n, 20}] (* G. C. Greubel, Jan 13 2020 *) PROG (PARI) concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016 (Magma) I:=[0, 24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019 (Sage) def A078522_list(prec): P. = PowerSeriesRing(ZZ, prec) return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list() a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020 (GAP) a:=[0, 24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020 CROSSREFS Cf. A000217, A008844, A009111, A029546, A029549, A046176. Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square. Sequence in context: A158651 A265884 A204559 * A268632 A208792 A195130 Adjacent sequences: A078519 A078520 A078521 * A078523 A078524 A078525 KEYWORD nonn,easy AUTHOR Joseph L. Pe, Jan 07 2003 EXTENSIONS Edited by Bruno Berselli, Nov 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 02:40 EST 2023. Contains 367505 sequences. (Running on oeis4.)