login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078522 Numbers n such that (n+1)*(2*n+1) is a perfect square. 11
0, 24, 840, 28560, 970224, 32959080, 1119638520, 38034750624, 1292061882720, 43892069261880, 1491038293021224, 50651409893459760, 1720656898084610640, 58451683124983302024, 1985636569351347658200, 67453191674820837076800, 2291422880374557112953024 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Equivalently, both n+1 and 2*n+1 are perfect squares.
The square roots of (n+1)*(2*n+1) are in A046176.
Also numbers n such that 3*A000217(n) + A000217(n+1) is a perfect square. - Bruno Berselli, Nov 17 2016
From Sergey Pavlov, Mar 14 2017: (Start)
The sequence of areas k(n)*q(n)/2, of the ordered Pythagorean triples (k(n), q(n) = k(n) + 2, c(n)) with k(1)=0, q(1)=2, c(1)=0, a(1)=0, and k(2)=6, q(2)=8, c(2)=10, a(2)=24 (conjectured).
Conjecture: let f(n) be a sequence of form x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + v, z(n)) with x(1)=0, y(1)=v, z(1)=0, f(1)=0, where v is an even number. Then there exists such subset p(i) that p(1) = 0, p(2) = 24*(v/2)^2, for any i > 2, p(i) = 34*p(i-1) - p(i-2) + 24*(v/2)^2, and any p(i) is a term of the above sequence f(n) (see also the first formula by Benoit Cloitre in the Formula section).
(End)
LINKS
FORMULA
From Benoit Cloitre, Jan 19 2003: (Start)
a(1)=0, a(2)=24; for n > 2, a(n) = 34*a(n-1) - a(n-2) + 24.
a(n) = floor(A*B^n), where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2).
a(n) = A008844(n) - 1. (End)
From R. J. Mathar, Sep 21 2011: (Start)
G.f.: 24*x^2/( (1-x)*(1-34*x+x^2) ).
a(n) = 24*A029546(n-2). (End)
a(n) = (A001653(n)^2 - 1)/2 = A002315(n-1)^2 - 1. - Tomohiro Yamada, Sep 15 2019
a(n) = (3/4)*(ChebyshevT(n, 17) - 16*Chebyshev(n-1, 17) - 1). - G. C. Greubel, Jan 13 2020
MAPLE
seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020
MATHEMATICA
RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n, 20}]
Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x, 0, 20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *)
Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n, 20}] (* G. C. Greubel, Jan 13 2020 *)
PROG
(PARI) concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016
(Magma) I:=[0, 24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019
(Sage)
def A078522_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list()
a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020
(GAP) a:=[0, 24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020
CROSSREFS
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.
Sequence in context: A158651 A265884 A204559 * A268632 A208792 A195130
KEYWORD
nonn,easy
AUTHOR
Joseph L. Pe, Jan 07 2003
EXTENSIONS
Edited by Bruno Berselli, Nov 17 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 02:40 EST 2023. Contains 367505 sequences. (Running on oeis4.)