OFFSET
0,2
COMMENTS
Triangular numbers that are twice other triangular numbers. - Don N. Page
Triangular numbers that are also pronic numbers. These will be shown to have a Pythagorean connection in a paper in preparation. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 09 2002
In other words, triangular numbers which are products of two consecutive numbers. E.g., a(2) = 210: 210 is a triangular number which is the product of two consecutive numbers: 14 * 15. - Shyam Sunder Gupta, Oct 26 2002
Coefficients of the series giving the best rational approximations to sqrt(8). The partial sums of the series 3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(8) = 2 sqrt(2), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2; 1, 4, 1], [2; 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1, 4, 1] and so forth. - Gene Ward Smith, Sep 30 2006
This is the sequence of areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + 1,z(n)) with x(0) = 0, y(0) = 1, z(0) = 1, a(0) = 0 and x(1) = 3, y(1) = 4, z(1) = 5, a(1) = 6. - George F. Johnson, Aug 20 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..100
H. J. Hindin, Stars, hexes, triangular numbers and Pythagorean triples, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)
Shyam Sunder Gupta Fascinating Triangular Numbers
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
Vladimir Pletser, Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2103.03019 [math.GM], 2021.
Vladimir Pletser, Searching for multiple of triangular numbers being triangular numbers, 2021.
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2021.
Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
FORMULA
G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).
a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - Gene Ward Smith, Sep 30 2006
From Bill Gosper, Feb 07 2010: (Start)
a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.
a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - Mitch Harris, Apr 19 2007, R. J. Mathar, Jun 26 2009
a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - Ant King, Dec 13 2010
a(n) = a(n - 1) + A001109(2n). - Charlie Marion, Feb 10 2011
a(n+2) = 34*a(n + 1) - a(n) + 6. - Charlie Marion, Feb 11 2011
From George F. Johnson, Aug 20 2012: (Start)
a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.
8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.
a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).
Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).
Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.
Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)
a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - Dimitri Papadopoulos, Jul 07 2017
a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Jan 13 2020
MAPLE
A029549 := proc(n)
option remember;
if n <= 1 then
op(n+1, [0, 6]) ;
else
34*procname(n-1)-procname(n-2)+6 ;
end if;
end proc: # R. J. Mathar, Feb 05 2016
MATHEMATICA
Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *)
CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]
Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *)
LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *)
(LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
PROG
(Macsyma) (makelist(binom(n, 2), n, 1, 999999), intersection(%%, 2*%%)) /* Bill Gosper, Feb 07 2010 */
(Haskell)
a029549 n = a029549_list !! n
a029549_list = [0, 6, 210] ++
zipWith (+) a029549_list
(map (* 35) $ tail delta)
where delta = zipWith (-) (tail a029549_list) a029549_list
-- Reinhard Zumkeller, Sep 19 2011
(PARI) concat(0, Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018
(Scala) val triNums = (0 to 39999).map(n => (n * n + n)/2)
triNums.filter(_ % 2 == 0).filter(n => (triNums.contains(n/2))) // Alonso del Arte, Jan 12 2020
(Sage) [(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
(GAP) List([0..20], n-> (Lucas(2, -1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Christian G. Bower, Sep 19 2002; T. D. Noe, Nov 07 2006; and others
Edited by N. J. A. Sloane, Apr 18 2007, following suggestions from Andrew S. Plewe and Tanya Khovanova
STATUS
approved