login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.
39

%I #155 Sep 12 2024 07:49:41

%S 0,6,210,7140,242556,8239770,279909630,9508687656,323015470680,

%T 10973017315470,372759573255306,12662852473364940,430164224521152660,

%U 14612920781245825506,496409142337836914550,16863297918705209269200,572855720093639278238256

%N a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.

%C Triangular numbers that are twice other triangular numbers. - _Don N. Page_

%C Triangular numbers that are also pronic numbers. These will be shown to have a Pythagorean connection in a paper in preparation. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 09 2002

%C In other words, triangular numbers which are products of two consecutive numbers. E.g., a(2) = 210: 210 is a triangular number which is the product of two consecutive numbers: 14 * 15. - _Shyam Sunder Gupta_, Oct 26 2002

%C Coefficients of the series giving the best rational approximations to sqrt(8). The partial sums of the series 3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(8) = 2 sqrt(2), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2; 1, 4, 1], [2; 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1, 4, 1] and so forth. - _Gene Ward Smith_, Sep 30 2006

%C This sequence satisfy the same recurrence as A165518. - _Ant King_, Dec 13 2010

%C Intersection of A000217 and A002378.

%C This is the sequence of areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + 1,z(n)) with x(0) = 0, y(0) = 1, z(0) = 1, a(0) = 0 and x(1) = 3, y(1) = 4, z(1) = 5, a(1) = 6. - _George F. Johnson_, Aug 20 2012

%H Reinhard Zumkeller, <a href="/A029549/b029549.txt">Table of n, a(n) for n = 0..100</a>

%H H. J. Hindin, <a href="/A006062/a006062.pdf">Stars, hexes, triangular numbers and Pythagorean triples</a>, J. Rec. Math., 16 (1983/1984), 191-193. (Annotated scanned copy)

%H Shyam Sunder Gupta <a href="http://www.shyamsundergupta.com/triangle.htm">Fascinating Triangular Numbers</a>

%H Roger B. Nelson, <a href="http://www.jstor.org/stable/10.4169/math.mag.89.3.159">Multi-Polygonal Numbers</a>, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.

%H Vladimir Pletser, <a href="https://arxiv.org/abs/2101.00998">Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers</a>, arXiv:2101.00998 [math.NT], 2021.

%H Vladimir Pletser, <a href="https://arxiv.org/abs/2102.12392">Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers</a>, arXiv:2102.12392 [math.GM], 2021.

%H Vladimir Pletser, <a href="https://arxiv.org/abs/2102.13494">Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations</a>, arXiv:2102.13494 [math.NT], 2021.

%H Vladimir Pletser, <a href="https://arxiv.org/abs/2103.03019">Congruence Properties of Indices of Triangular Numbers Multiple of Other Triangular Numbers</a>, arXiv:2103.03019 [math.GM], 2021.

%H Vladimir Pletser, <a href="https://doi.org/10.13140/RG.2.2.35428.91527">Searching for multiple of triangular numbers being triangular numbers</a>, 2021.

%H Vladimir Pletser, <a href="https://www.researchgate.net/profile/Vladimir-Pletser/publication/359808848_USING_PELL_EQUATION_SOLUTIONS_TO_FIND_ALL_TRIANGULAR_NUMBERS_MULTIPLE_OF_OTHER_TRIANGULAR_NUMBERS/">Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers</a>, 2021.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).

%F G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).

%F a(n) = 6*A029546(n-1) = 2*A075528(n).

%F a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - _Gene Ward Smith_, Sep 30 2006

%F From _Bill Gosper_, Feb 07 2010: (Start)

%F a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.

%F a(n) = binomial(A001652(n) + 1, 2) = 2*binomial(A053141(n) + 1, 2). (End)

%F a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - _Mitch Harris_, Apr 19 2007, _R. J. Mathar_, Jun 26 2009

%F a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - _Ant King_, Dec 13 2010

%F Sum_{n >= 1} 1/a(n) = 3 - 2*sqrt(2) = A157259 - 4. - _Ant King_, Dec 13 2010

%F a(n) = a(n - 1) + A001109(2n). - _Charlie Marion_, Feb 10 2011

%F a(n+2) = 34*a(n + 1) - a(n) + 6. - _Charlie Marion_, Feb 11 2011

%F From _George F. Johnson_, Aug 20 2012: (Start)

%F a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.

%F 8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.

%F a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).

%F a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).

%F a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).

%F a(n) = (1/2)*A084159(n)*A046729(n) = (1/2)*A001652(n)*A046090(n).

%F Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).

%F Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).

%F Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.

%F Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)

%F a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - _Dimitri Papadopoulos_, Jul 07 2017

%F a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - _G. C. Greubel_, Jan 13 2020

%F a(n) = A002378(A011900(n)-1) = A002378(A053141(n)). - _Pontus von Brömssen_, Sep 11 2024

%p A029549 := proc(n)

%p option remember;

%p if n <= 1 then

%p op(n+1,[0,6]) ;

%p else

%p 34*procname(n-1)-procname(n-2)+6 ;

%p end if;

%p end proc: # _R. J. Mathar_, Feb 05 2016

%t Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by _Ray Chandler_, Jul 09 2015 *)

%t CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]

%t Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* _Bill Gosper_, Feb 07 2010 *)

%t LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* _Harvey P. Dale_, Jun 06 2011 *)

%t (LucasL[4Range[20] - 2, 2] -6)/32 (* _G. C. Greubel_, Jan 13 2020 *)

%o (Macsyma) (makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* _Bill Gosper_, Feb 07 2010 */

%o (Haskell)

%o a029549 n = a029549_list !! n

%o a029549_list = [0,6,210] ++

%o zipWith (+) a029549_list

%o (map (* 35) $ tail delta)

%o where delta = zipWith (-) (tail a029549_list) a029549_list

%o -- _Reinhard Zumkeller_, Sep 19 2011

%o (PARI) concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ _Charles R Greathouse IV_, Jun 13 2013

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // _G. C. Greubel_, Jul 15 2018

%o (Scala) val triNums = (0 to 39999).map(n => (n * n + n)/2)

%o triNums.filter(_ % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte_, Jan 12 2020

%o (Sage) [(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # _G. C. Greubel_, Jan 13 2020

%o (GAP) List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # _G. C. Greubel_, Jan 13 2020

%Y Cf. A123478, A123479, A123480, A123482, A075528, A082405 (first differences).

%Y Cf. A000129, A001108, A002203, A009111, A245031.

%Y Cf. A000217, A001109, A001652, A002315, A002378, A011900, A029546, A046090, A046729, A053141, A084159, A096979, A157259, A165518.

%K nonn,easy

%O 0,2

%A _Don N. Page_

%E Additional comments from _Christian G. Bower_, Sep 19 2002; _T. D. Noe_, Nov 07 2006; and others

%E Edited by _N. J. A. Sloane_, Apr 18 2007, following suggestions from _Andrew S. Plewe_ and _Tanya Khovanova_