|
|
A011900
|
|
a(n) = 6*a(n-1) - a(n-2) - 2 with a(0) = 1, a(1) = 3.
|
|
20
|
|
|
1, 3, 15, 85, 493, 2871, 16731, 97513, 568345, 3312555, 19306983, 112529341, 655869061, 3822685023, 22280241075, 129858761425, 756872327473, 4411375203411, 25711378892991, 149856898154533, 873430010034205, 5090723162050695, 29670908962269963
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Members of Diophantine pairs.
Solution to b*(b-1) = 2*a*(a-1) in natural numbers; a = a(n), b = b(n) = A046090(n).
Also the indices of centered octagonal numbers which are also centered square numbers. - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 4*x^2 - 8*y^2 - 4*x + 8*y = 0. - Colin Barker, Jan 01 2015
Also the number of perfect matchings on a triangular lattice of width 3 and length n. - Sergey Perepechko, Jul 11 2019
|
|
REFERENCES
|
Mario Velucchi "The Pell's equation ... an amusing application" in Mathematics and Informatics Quarterly, to appear 1997.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (((1+sqrt(2))^(2*n-1) - (1-sqrt(2))^(2*n-1))/sqrt(8)+1)/2.
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3); a(1) = 1, a(2) = 3, a(3) = 15. Also a(n) = 1/2 + ( (1-sqrt(2))/(-4*sqrt(2)) )*(3-2*sqrt(2))^n + ( (1+sqrt(2))/(4*sqrt(2)) )*(3+2*sqrt(2))^n. - Antonio Alberto Olivares, Dec 23 2003
Sqrt(2) = Sum_{n>=0} 1/a(n); a(n) = a(n-1) + floor(1/(sqrt(2) - Sum_{k=0..n-1} 1/a(k))) (n>0) with a(0)=1. - Paul D. Hanna, Jan 25 2004
a(n+1) = 3*a(n) - 1 + sqrt(8*a(n)^2 - 8*a(n) + 1), a(1)=1. - Richard Choulet, Sep 18 2007
a(n+1) = a(n) * (a(n) + 2) / a(n-1) for n>=1 with a(0)=1 and a(1)=3. - Paul D. Hanna, Apr 08 2012
G.f.: (1 - 4*x + x^2)/((1-x)*(1 - 6*x + x^2)). - R. J. Mathar, Oct 26 2009
|
|
EXAMPLE
|
G.f. = 1 + 3*x + 15x^2 + 85*x^3 + 493*x^4 + 2871*x^5 + 16731*x^6 + ... - Michael Somos, Feb 23 2019
|
|
MAPLE
|
f:= gfun:-rectoproc({a(n)=6*a(n-1)-a(n-2)-2, a(0)=1, a(1)=3}, a(n), remember):
|
|
MATHEMATICA
|
a[0] = 1; a[1] = 3; a[n_] := a[n] = 6 a[n - 1] - a[n - 2] - 2; Table[a@ n, {n, 0, 22}] (* Michael De Vlieger, Dec 05 2015 *)
LinearRecurrence[{7, -7, 1}, {1, 3, 15}, 30] (* Harvey P. Dale, Feb 16 2017 *)
a[ n_] := (4 + ChebyshevT[n, 3] + ChebyshevT[n + 1, 3])/8; (* Michael Somos, Feb 23 2019 *)
|
|
PROG
|
(PARI) Vec((1-4*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^100)) \\ Altug Alkan, Dec 06 2015
(Magma) I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2) - 2: n in [1..30]]; // Vincenzo Librandi, Dec 05 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mario Velucchi (mathchess(AT)velucchi.it)
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|