login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011902
a(n) = floor( n*(n-1)*(n-2)/20 ).
2
0, 0, 0, 0, 1, 3, 6, 10, 16, 25, 36, 49, 66, 85, 109, 136, 168, 204, 244, 290, 342, 399, 462, 531, 607, 690, 780, 877, 982, 1096, 1218, 1348, 1488, 1636, 1795, 1963, 2142, 2331, 2530, 2741, 2964, 3198, 3444, 3702, 3973, 4257, 4554, 4864, 5188, 5527, 5880, 6247, 6630, 7027, 7441, 7870, 8316, 8778, 9256, 9752, 10266, 10797, 11346, 11913, 12499, 13104, 13728, 14371
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-3,3,-1).
FORMULA
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = +3*a(n-1) -3*a(n-2) +a(n-3) +a(n-20) -3*a(n-21) +3*a(n-22) -a(n-23).
G.f.: x^4*(1+x^4+x^5-x^6+2*x^8-2*x^9+3*x^10-2*x^11+2*x^12-x^13+2*x^15-x^17+x^18)/((1-x)^4*(1+x)*(1+x^2)*(1+x+x^2+x^3+x^4)*(1-x+x^2-x^3+x^4)*(1-x^2+x^4-x^6+x^8)). (End)
MATHEMATICA
Table[Floor[(n(n-1)(n-2))/20], {n, 0, 80}] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(Magma) [Floor(3*Binomial(n, 3)/10): n in [0..80]]; // G. C. Greubel, Oct 18 2024
(SageMath) [3*binomial(n, 3)//10 for n in range(81)] # G. C. Greubel, Oct 18 2024
CROSSREFS
Cf. A011886.
Sequence in context: A376708 A280709 A025222 * A025004 A145131 A265072
KEYWORD
nonn,easy
EXTENSIONS
More terms added by G. C. Greubel, Oct 18 2024
STATUS
approved