OFFSET
0,2
COMMENTS
Such polynomials are a product of distinct cyclotomic polynomials, possibly multiplied by z. This follows from a classical result of Kronecker -- see Links.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173-175.
FORMULA
a(0) = 1 and a(n) = b(n)+b(n-1) for n >= 1, where b(n) = A280611(n).
G.f.: (1+x)*Product_{i>=1} (1+x^phi(i)) = (1+x)*Product_{j>=1} (1+x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
It is also the Euler transform of A280712 except with its first two terms (2,1) replaced by (3,0).
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (2*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021
EXAMPLE
a(2)=6 because the six polynomials z^2+z+1, z^2+1, z^2-z+1, z^2-z, z^2+z and z^2-1 are the only ones of the required type.
MATHEMATICA
Table[SeriesCoefficient[(1 + x) Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 120}] (* Michael De Vlieger, Jan 10 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Christopher J. Smyth, Jan 07 2017
STATUS
approved