login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280709
The number of monic integer polynomials of degree n all of whose roots are distinct and of modulus at most 1.
3
1, 3, 6, 10, 16, 24, 38, 58, 86, 122, 172, 236, 328, 448, 606, 802, 1060, 1380, 1806, 2338, 3018, 3846, 4900, 6180, 7816, 9808, 12294, 15274, 18982, 23418, 28938, 35542, 43638, 53226, 64942, 78786, 95686, 115642, 139754, 168022, 202086, 241946
OFFSET
0,2
COMMENTS
Such polynomials are a product of distinct cyclotomic polynomials, possibly multiplied by z. This follows from a classical result of Kronecker -- see Links.
LINKS
L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173-175.
FORMULA
a(0) = 1 and a(n) = b(n)+b(n-1) for n >= 1, where b(n) = A280611(n).
G.f.: (1+x)*Product_{i>=1} (1+x^phi(i)) = (1+x)*Product_{j>=1} (1+x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
It is also the Euler transform of A280712 except with its first two terms (2,1) replaced by (3,0).
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (2*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021
EXAMPLE
a(2)=6 because the six polynomials z^2+z+1, z^2+1, z^2-z+1, z^2-z, z^2+z and z^2-1 are the only ones of the required type.
MATHEMATICA
Table[SeriesCoefficient[(1 + x) Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 120}] (* Michael De Vlieger, Jan 10 2017 *)
CROSSREFS
Cf. A280611 (variant where all roots must have modulus exactly 1);
Cf. A120963 (variant where multiple roots are allowed).
Sequence in context: A078663 A173691 A376708 * A025222 A011902 A025004
KEYWORD
easy,nonn
AUTHOR
STATUS
approved