login
A280708
Lexicographically earliest sequence such that no subsequence sums to a prime.
1
1, 8, 24, 24, 86, 1260, 1890, 14136, 197400, 10467660, 1231572090
OFFSET
1,2
COMMENTS
This sequence is monotonically increasing.
So far, apart from a(4) this sequence is identical to A052349.
EXAMPLE
For n = 4, a(4) = 24 because all subsets have nonprime sums:
1 + 8 = 9 = 3^2
1 + 24 = 25 = 5^2
8 + 24 = 32 = 2^5
24 + 24 = 48 = 2^4*3
1 + 8 + 24 = 33 = 3*11
1 + 24 + 24 = 49 = 7^2
8 + 24 + 24 = 56 = 2^3*7
1 + 8 + 24 + 24 = 57 = 3*19
MAPLE
S:= {0}: count:= 0:
x:= 1:
while x < 10^6 do
if ormap(s -> isprime(s+x), S) then x:= x+1
else
count:= count+1;
A[count]:= x;
S:= S union map(`+`, S, x);
fi
od:
seq(A[i], i=1..count); # Robert Israel, Jan 20 2017
MATHEMATICA
t = {1}; c = 1; Print[1]; While[Length[t] < 11, r = Rest[Subsets[t]]; s = Table[Total[r[[i]]], {i, Length[r]}]; While[PrimeQ[c] || Union[PrimeQ[s + c]] != {False}, c++]; Print[c]; AppendTo[t, c]] (* Hans Havermann, Jan 20 2017 *)
CROSSREFS
Cf. A052349.
Sequence in context: A088448 A005878 A128637 * A370531 A109272 A361998
KEYWORD
nonn,hard,more
AUTHOR
Peter Kagey, Jan 07 2017
EXTENSIONS
a(9) and a(10) from Dmitry Kamenetsky, Jan 12 2017
a(11) from Hans Havermann, Jan 20 2017
STATUS
approved