login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280710
Characteristic function of squarefree semiprimes.
18
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
FORMULA
a(n) = floor(Omega(n)*mu(n)^2/2)*floor(2*mu(n)^2/Omega(n)) for n>1 with a(1) = 0 where Omega(n) = A001222(n) and mu(n) = A008683(n).
a(n) = A008966(n)*A064911(n). - Felix Fröhlich, Jan 07 2017
MAPLE
with(numtheory): A280710:=n->`if`(bigomega(n)*mobius(n)^2 = 2, 1, 0): seq(A280710(n), n=1..100);
MATHEMATICA
Table[If[PrimeOmega[n] MoebiusMu[n]^2 == 2, 1, 0], {n, 1, 90}] (* Indranil Ghosh, Mar 10 2017 *)
PROG
(PARI) a(n) = bigomega(n)==2*issquarefree(n) \\ Felix Fröhlich, Jan 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 07 2017
EXTENSIONS
More terms from Antti Karttunen, Nov 20 2017
STATUS
approved