|
|
A354981
|
|
a(n) = 1 if n = 2 * p^k, with p an odd prime and k >= 1, otherwise 0.
|
|
1
|
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = [n == 2 (mod 4)] * A069513(n/2), where [ ] is the Iverson bracket.
|
|
MATHEMATICA
|
a[n_] := If[IntegerExponent[n, 2] == 1 && PrimePowerQ[n/2], 1, 0]; Array[a, 100] ( * Amiram Eldar, Jun 15 2022 *)
Module[{nn=150, c}, c=Union[Flatten[Table[2 p^k, {p, Prime[Range[2, 35]]}, {k, 5}]]]; Table[If[ MemberQ[ c, k], 1, 0], {k, nn}]] (* Harvey P. Dale, Sep 18 2023 *)
|
|
PROG
|
(PARI) A354981(n) = (2==(n%4) && isprimepower(n/2));
|
|
CROSSREFS
|
Characteristic function of A278568 \ {2}.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|