login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354981
a(n) = 1 if n = 2 * p^k, with p an odd prime and k >= 1, otherwise 0.
1
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = [n == 2 (mod 4)] * A069513(n/2), where [ ] is the Iverson bracket.
For n > 4, a(n) = A211487(n) - A174275(n).
MATHEMATICA
a[n_] := If[IntegerExponent[n, 2] == 1 && PrimePowerQ[n/2], 1, 0]; Array[a, 100] ( * Amiram Eldar, Jun 15 2022 *)
Module[{nn=150, c}, c=Union[Flatten[Table[2 p^k, {p, Prime[Range[2, 35]]}, {k, 5}]]]; Table[If[ MemberQ[ c, k], 1, 0], {k, nn}]] (* Harvey P. Dale, Sep 18 2023 *)
PROG
(PARI) A354981(n) = (2==(n%4) && isprimepower(n/2));
CROSSREFS
Characteristic function of A278568 \ {2}.
Sequence in context: A361463 A104853 A358775 * A231600 A347579 A280710
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 15 2022
STATUS
approved