OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(-q) / phi(-q^3))^4 in powers of q where phi() is a Ramanujan theta function.
Expansion of ((eta(q) / eta(q^3))^2 * (eta(q^6) / eta(q^2)))^4 in powers of q.
Euler transform of period 6 sequence [ -8, -4, 0, -4, -8, 0, ...].
G.f.: A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (9-v) - (u-v)^2.
G.f.: A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u^2*v^2 + 9*u*v - 12*u*v^2 + 30*v^2 - 108*v + 81) * u - v^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 9 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128640.
G.f.: (Product_{k>0} (1 - x^k + x^(2*k)) / (1 + x^k + x^(2*k)) )^4.
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 9 + 3*sqrt(3) - 3*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 02 2021
EXAMPLE
G.f. = 1 - 8*q + 24*q^2 - 24*q^3 - 40*q^4 + 144*q^5 - 120*q^6 - 192*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^3])^4, {q, 0, n}]; (* Michael Somos, Apr 06 2013 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ -q^3, q^3] / QPochhammer[ -q, q])^4 /(QPochhammer[ q^3] / QPochhammer[ q])^4, {q, 0, n}]; (* Michael Somos, Apr 06 2013 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) / eta(x^3 + A))^2 * eta(x^6 + A) / eta(x^2 + A))^4, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 16 2007
STATUS
approved