The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128639 Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions. 3
 1, 8, 40, 152, 488, 1392, 3640, 8896, 20584, 45512, 96816, 199200, 398072, 775216, 1475264, 2749776, 5029736, 9043344, 16005352, 27918304, 48047280, 81661504, 137183136, 227952960, 374924152, 610743224, 985891568, 1577869784, 2504850112, 3945854640, 6170415888 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (phi(-q^3) / phi(-q))^4 in powers of q where phi() is a Ramanujan theta function. Expansion of ((eta(q^3) / eta(q))^2 * (eta(q^2) / eta(q^6)))^4 in powers of q. Euler transform of period 6 sequence [ 8, 4, 0, 4, 8, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (1-9*v) - (u-v)^2. G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)) )^4. a(n) = 8 * A128638(n) unless n = 0. Convolution inverse of A128637. a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015 Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/3 + (1/9)*sqrt(3) + (1/9)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 02 2021 EXAMPLE G.f. = 1 + 8*q + 40*q^2 + 152*q^3 + 488*q^4 + 1392*q^5 + 3640*q^6 + ... MATHEMATICA nmax = 40; CoefficientList[Series[Product[((1 + x^k + x^(2*k)) / (1 - x^k + x^(2*k)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^3 + A) / eta(x + A))^2 * eta(x^2 + A) / eta(x^6 + A))^4, n))}; CROSSREFS Cf. A128637, A128638. Sequence in context: A028596 A264602 A125198 * A341365 A004405 A284286 Adjacent sequences: A128636 A128637 A128638 * A128640 A128641 A128642 KEYWORD nonn AUTHOR Michael Somos, Mar 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 21:57 EST 2022. Contains 358453 sequences. (Running on oeis4.)