OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (chi(-q)^3 / chi(-q^3))^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of ((eta(q) / eta(q^2))^3 * (eta(q^6) / eta(q^3)))^3 in powers of q.
Euler transform of period 6 sequence [ -9, 0, -6, 0, -9, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (8+u) - (u-v)^2.
G.f.: (Product_{k>0} (1 + x^(3*k)) / (1 + x^k)^3)^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123633.
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = -2 - 2*3^(1/2) + 2*6^(1/2)*3^(1/4). - Simon Plouffe, Mar 04 2021
EXAMPLE
G.f. = 1 - 9*q + 36*q^2 - 90*q^3 + 180*q^4 - 351*q^5 + 684*q^6 - 1260*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QP[q]; a[n_]:= SeriesCoefficient[((eta[q]/eta[q^2])^3*(eta[q^6]/eta[q^3]))^3, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 29 2019 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) / eta(x^2 + A))^3 * eta(x^6 + A) / eta(x^3 + A))^3, n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Mar 16 2007
STATUS
approved