login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128641
Expansion of (1/3) * (c(q)^2 / c(q^2)) / (b(q^2)^2 / b(q)) in powers of q where b(), c() are cubic AGM theta functions.
6
1, -1, 4, -10, 20, -39, 76, -140, 244, -415, 696, -1140, 1820, -2861, 4448, -6816, 10292, -15372, 22756, -33356, 48408, -69683, 99600, -141312, 199036, -278557, 387608, -536230, 737632, -1009464, 1374888, -1863764, 2514868, -3378948, 4521672, -6027000, 8002676
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(-q^3)^3 / phi(-q)) / (psi(q)^3 / psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q) / eta(q^6)) * (eta(q^3) / eta(q^2))^5 in powers of q.
Euler transform of period 6 sequence [ -1, 4, -6, 4, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u * (1-v) * (8-9*u) + (u-v)^2.
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(6*k)) * ((1 - x^(3*k)) / (1 - x^(2*k)))^5.
A128640(n) = -a(n) unless n = 0. Convolution inverse of A128636.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (2 * 3^(9/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 2/3 - (2/9)*sqrt(3) + (2/9)*sqrt(6)*3^(1/4). - Simon Plouffe, Mar 04 2021
a(n) = (-1)^n*A164617(n). - Michael Somos, Apr 24 2023
EXAMPLE
G.f. = 1 - q + 4*q^2 - 10*q^3 + 20*q^4 - 39*q^5 + 76*q^6 - 140*q^7 + ...
MATHEMATICA
eta[x_] := x^(1/24)*QPochhammer[x]; A128641[n_] := SeriesCoefficient[ (eta[q]/eta[q^6])*(eta[q^3]/eta[q^2])^5, {q, 0, n}]; Table[A128641[n], {n, 0, 50}] (* G. C. Greubel, Aug 22 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x^2 + A))^5 * eta(x + A) / eta(x^6 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 16 2007
STATUS
approved