login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258346 Expansion of Product_{k>=1} (1+x^k)^(k*(k-1)*(k-2)/6). 8
1, 0, 0, 1, 4, 10, 20, 39, 72, 144, 280, 567, 1112, 2187, 4204, 8073, 15309, 28986, 54548, 102286, 190881, 354717, 656194, 1208712, 2217624, 4052633, 7379630, 13390098, 24215587, 43649482, 78435884, 140513905, 250988186, 447037367, 794031641, 1406585604 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

FORMULA

a(n) ~ (3*Zeta(5))^(1/10) / (2^(523/720) * 5^(2/5) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (10497600000000 * Zeta(5)^3) + 49*Pi^8 * Zeta(3) / (16200000 * Zeta(5)^2) - Zeta(3)^2 / (150*Zeta(5)) + (-343*Pi^12 / (2430000000 * 2^(3/5) * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (4500 * 2^(3/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-49*Pi^8 / (1080000 * 2^(1/5) * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * (15*Zeta(5))^(2/5))) * n^(2/5) - 7*Pi^4 / (180 * 2^(4/5) * (15*Zeta(5))^(3/5)) * n^(3/5) + 5*(15*Zeta(5))^(1/5) / 2^(12/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663.

MATHEMATICA

nmax=50; CoefficientList[Series[Product[(1+x^k)^(k*(k-1)*(k-2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A248882, A028377, A258341, A258342, A258343, A258344, A258345, A258352.

Sequence in context: A168673 A090164 A261635 * A128640 A128641 A164617

Adjacent sequences:  A258343 A258344 A258345 * A258347 A258348 A258349

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, May 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 08:18 EDT 2022. Contains 356079 sequences. (Running on oeis4.)