login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258349
Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)/2).
10
1, 0, 1, 3, 7, 13, 28, 52, 107, 203, 396, 741, 1409, 2596, 4813, 8777, 15972, 28737, 51553, 91644, 162288, 285377, 499653, 869758, 1507615, 2599974, 4465606, 7635607, 13005252, 22061424, 37287395, 62788012, 105365891, 176211393, 293741195, 488101711, 808604106
OFFSET
0,4
LINKS
FORMULA
a(n) ~ 1 / (2^(155/96) * 15^(11/96) * Pi^(1/24) * n^(59/96)) * exp(-Zeta'(-1)/2 - Zeta(3) / (8*Pi^2) - 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 / (2^(7/4) * Pi^5) * n^(1/4) - sqrt(15/2) * Zeta(3) / Pi^2 * sqrt(n) + 2^(7/4)*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962).
G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 22 2018
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: binomial(n, 2))
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, May 27 2015
STATUS
approved