The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258348 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)). 8
 1, 0, 2, 6, 15, 32, 79, 172, 397, 860, 1879, 3986, 8462, 17586, 36408, 74366, 150875, 303006, 604511, 1195872, 2350614, 4587484, 8898857, 17154278, 32883109, 62679852, 118858190, 224238730, 421021209, 786793776, 1463796383, 2711552690, 5002097398, 9190449808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ 1 / (2^(3/2) * 15^(5/48) * Pi^(1/12) * n^(29/48)) * exp(-Zeta'(-1) - Zeta(3)/(4*Pi^2) - 75*Zeta(3)^3 / Pi^8 - 15^(5/4) * Zeta(3)^2 / (2*Pi^5) * n^(1/4) - sqrt(15) * Zeta(3) / Pi^2 * sqrt(n) + 4*Pi / (3*15^(1/4)) * n^(3/4)), where Zeta(3) = A002117, Zeta'(-1) = A084448 = 1/12 - log(A074962). G.f.: exp(Sum_{k>=1} (sigma_3(k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Aug 22 2018 MATHEMATICA nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)), {k, 1, nmax}], {x, 0, nmax}], x] Clear[a]; a[n_]:= a[n] = 1/n*Sum[(DivisorSigma[3, k]-DivisorSigma[2, k])*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Apr 11 2016, following a suggestion of George Beck *) CROSSREFS Cf. A000294, A023871, A258344, A258347, A258349, A258350, A258351, A258352. Sequence in context: A261442 A078406 A327598 * A262151 A246320 A101352 Adjacent sequences:  A258345 A258346 A258347 * A258349 A258350 A258351 KEYWORD nonn AUTHOR Vaclav Kotesovec, May 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 17:59 EDT 2022. Contains 356107 sequences. (Running on oeis4.)