login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327598
Number of colored integer partitions of n using all colors of a 2-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.
2
0, 0, 2, 6, 15, 32, 65, 124, 230, 414, 729, 1258, 2141, 3586, 5935, 9716, 15738, 25258, 40196, 63452, 99426, 154732, 239219, 367592, 561602, 853300, 1289777, 1939920, 2904003, 4327672, 6421572, 9489260, 13967003, 20479638, 29919253, 43556102, 63193528
OFFSET
0,3
EXAMPLE
a(2) = 2: 2ab, 1a1b.
a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
MAPLE
C:= binomial:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k))(2):
seq(a(n), n=0..37);
MATHEMATICA
c = Binomial;
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
a[n_] := With[{k = 2}, Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]];
a /@ Range[0, 37] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A327116.
Sequence in context: A289969 A261442 A078406 * A258348 A262151 A246320
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 27 2019
STATUS
approved