Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Dec 17 2020 07:55:18
%S 0,0,2,6,15,32,65,124,230,414,729,1258,2141,3586,5935,9716,15738,
%T 25258,40196,63452,99426,154732,239219,367592,561602,853300,1289777,
%U 1939920,2904003,4327672,6421572,9489260,13967003,20479638,29919253,43556102,63193528
%N Number of colored integer partitions of n using all colors of a 2-set such that all parts have different color patterns and a pattern for part i has i colors in (weakly) increasing order.
%H Alois P. Heinz, <a href="/A327598/b327598.txt">Table of n, a(n) for n = 0..3000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%e a(2) = 2: 2ab, 1a1b.
%e a(3) = 6: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a.
%p C:= binomial:
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
%p b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
%p end:
%p a:= n-> (k-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k))(2):
%p seq(a(n), n=0..37);
%t c = Binomial;
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k] c[c[k + i - 1, i], j], {j, 0, n/i}]]];
%t a[n_] := With[{k = 2}, Sum[b[n, n, i] (-1)^(k - i) c[k, i], {i, 0, k}]];
%t a /@ Range[0, 37] (* _Jean-François Alcover_, Dec 17 2020, after _Alois P. Heinz_ *)
%Y Column k=2 of A327116.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 27 2019