OFFSET
0,3
COMMENTS
Stirling-Bernoulli transform of partition numbers (A000041).
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n+1,k+1) * k! * A000041(k).
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[x] Product[1/(1 - (1 - Exp[x])^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k StirlingS2[n + 1, k + 1] k! PartitionsP[k], {k, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*stirling(n+1, k+1, 2)*k!*numbpart(k)); \\ Michel Marcus, Sep 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 18 2019
STATUS
approved