|
|
A327601
|
|
Expansion of e.g.f. exp(x) * Product_{k>=1} 1/(1 - (1 - exp(x))^k).
|
|
2
|
|
|
1, 0, 2, 0, 26, 120, 1922, 21840, 307946, 4251240, 63165842, 1010729280, 18501318266, 391496665560, 9265945721762, 232411950454320, 5972325812958986, 156131611764907080, 4208451299935189682, 119669466221148348960, 3658459009408581118106
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Stirling-Bernoulli transform of partition numbers (A000041).
|
|
LINKS
|
Table of n, a(n) for n=0..20.
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (-1)^k * Stirling2(n+1,k+1) * k! * A000041(k).
|
|
MATHEMATICA
|
nmax = 20; CoefficientList[Series[Exp[x] Product[1/(1 - (1 - Exp[x])^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k StirlingS2[n + 1, k + 1] k! PartitionsP[k], {k, 0, n}], {n, 0, 20}]
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (-1)^k*stirling(n+1, k+1, 2)*k!*numbpart(k)); \\ Michel Marcus, Sep 19 2019
|
|
CROSSREFS
|
Cf. A000041, A167137, A306022, A306042.
Sequence in context: A157304 A157305 A306416 * A336287 A337074 A156459
Adjacent sequences: A327598 A327599 A327600 * A327602 A327603 A327604
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Sep 18 2019
|
|
STATUS
|
approved
|
|
|
|