login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327603
Number of digits in (n^n)^(n^n).
1
1, 1, 3, 39, 617, 10922, 217833, 4871823, 121210687, 3327237897, 100000000001, 3268336354411, 115465060699617, 4386014250379643, 178300955775879752, 7725047653062230514, 355393490465494856466, 17303907095298306637188, 889028356166899850147118
OFFSET
0,3
COMMENTS
a(0) = 1 whether we take 0^0 = 1 or 0^0 = 0.
The standard simplification of (n^n)^(n^n) is n^(n^(n+1)). - M. F. Hasler, Oct 15 2019
FORMULA
a(n) = 1 + floor(n^(n+1) * log_10(n)).
a(10^k) = k * 10^(k*(10^k + 1)) + 1. - Jon E. Schoenfield, Sep 29 2019
a(n) = A055642(A004217(n)), n > 0. - Felix Fröhlich, Oct 15 2019
EXAMPLE
a(10) = 1 + floor(10^(10+1) * log_10(10)) = 1 + floor( 100000000000 * 1) = 100000000001.
a(10^3) = 3*10^3003 + 1.
MATHEMATICA
Table[IntegerLength[(n^n)^(n^n)], {n, 1, 8}] (* Human friendly *)
Table[1 + Floor[n^(n + 1) * Log10[n]], {n, 1, 16}] (* Computationally efficient *)
PROG
(PARI) a(n) = my(x=n^n); 1 + floor(x*log(x)/log(10));
(PARI) A327603(n, L=log(10))=n^(n+1)*log(n)\L+1 \\ Supplying the 2nd arg allows to avoid re-computation of log(10) on each call, and also to get the number of digits in any desired base. - M. F. Hasler, Oct 15 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Natan Arie Consigli, Sep 22 2019
EXTENSIONS
a(9)-a(15) from Nathaniel Johnston, Sep 23 2019
a(13)-a(15) corrected and a(16) appended by Natan Arie Consigli, Sep 25 2019
a(17)-a(18) from Jon E. Schoenfield, Sep 29 2019
STATUS
approved