login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336540 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^4 * (2 + A(x)). 3
1, 3, 39, 705, 14799, 338430, 8181597, 205655304, 5320853535, 140761481673, 3790170529806, 103531954949526, 2861975199328581, 79913364673955880, 2250605304332901048, 63855671824327590480, 1823518942311678061503, 52371578117120237562459, 1511737669565948867948805 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..671

FORMULA

a(n) = (1/n) * Sum_{k=1..n} 3^k * binomial(n,k) * binomial(4*n,k-1) for n > 0.

a(n) = Sum_{k=0..n} 2^(n-k) * binomial(n,k) * binomial(4*n+k+1,n)/(4*n+k+1).

a(n) = (1/(4*n+1)) * Sum_{k=0..n} 2^k * binomial(4*n+1,k) * binomial(5*n-k,n-k).

a(n) ~ sqrt(59601 + 205733*sqrt(3/43)) * (7781 + 731*sqrt(129))^(n - 1/2) / (sqrt(Pi) * n^(3/2) * 2^(9*n + 7/2)). - Vaclav Kotesovec, Jul 31 2021

MATHEMATICA

a[n_] := Sum[2^(n-k) * Binomial[n, k] * Binomial[4*n + k + 1, n]/(4*n + k + 1), {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jul 28 2020 *)

PROG

(PARI) {a(n) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^4*(2+A)); polcoeff(A, n)}

(PARI) {a(n) = if(n==0, 1, sum(k=1, n, 3^k*binomial(n, k)*binomial(4*n, k-1)/n))}

(PARI) {a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(4*n+k+1, n)/(4*n+k+1))} \\ Seiichi Manyama, Jul 28 2020

(PARI) {a(n) = sum(k=0, n, 2^k*binomial(4*n+1, k)*binomial(5*n-k, n-k))/(4*n+1)} \\ Seiichi Manyama, Jul 28 2020

CROSSREFS

Column k=4 of A336575.

Sequence in context: A341671 A328809 A327603 * A228749 A104209 A121247

Adjacent sequences:  A336537 A336538 A336539 * A336541 A336542 A336543

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Jul 25 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 16:15 EDT 2021. Contains 348174 sequences. (Running on oeis4.)