login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104209
Number of labeled directed multigraphs with n arrows and no vertex of degree 0.
9
1, 3, 39, 819, 23949, 898947, 41212155, 2232057171, 139455901101, 9873341493231, 781184921112075, 68309191570851759, 6541702440222052137, 680922615974259589527, 76544749927261960908807, 9241807764375868372683255, 1192762017796744530286451865
OFFSET
0,2
COMMENTS
These are the dimensions of the homogeneous components of a commutative graded Hopf algebra generalizing quasi-symmetric functions.
LINKS
J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes [Hopf algebras of graphs], C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
FORMULA
a(n) = Sum_{m >=0} binomial(m^2+n-1, n)/2^(m+1).
G.f.: Sum_{m >= 0} (1-x)^(-m^2)/2^(m+1). Row sums of A120945. - Vladeta Jovovic, Sep 25 2006
a(n) ~ c * 2^(2*n) * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.432167265869761794333243584356866417673557873163120324347... = 2^(log(2)/8 - 1) / (sqrt(Pi) * log(2)). - Vaclav Kotesovec, May 03 2015, updated Mar 21 2018
EXAMPLE
a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
MAPLE
d:=proc(n) local m; sum(binomial(m^2+n-1, n)/2^(m+1), m=0..infinity); end;
MATHEMATICA
f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, Mar 16 2005 *)
Table[Sum[Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[j^2+n-1, n], {j, 0, k}], {k, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 03 2015, much faster *)
CROSSREFS
Cf. A052171 (counts same objects up to labeling).
Sequence in context: A336540 A228749 A370327 * A121247 A064732 A092610
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Mar 13 2005
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Mar 16 2005
Offset corrected by Vaclav Kotesovec, May 03 2015
STATUS
approved