OFFSET
0,2
COMMENTS
These are the dimensions of the homogeneous components of a commutative graded Hopf algebra generalizing quasi-symmetric functions.
LINKS
J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes [Hopf algebras of graphs], C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
FORMULA
a(n) = Sum_{m >=0} binomial(m^2+n-1, n)/2^(m+1).
G.f.: Sum_{m >= 0} (1-x)^(-m^2)/2^(m+1). Row sums of A120945. - Vladeta Jovovic, Sep 25 2006
a(n) ~ c * 2^(2*n) * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.432167265869761794333243584356866417673557873163120324347... = 2^(log(2)/8 - 1) / (sqrt(Pi) * log(2)). - Vaclav Kotesovec, May 03 2015, updated Mar 21 2018
EXAMPLE
a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
MAPLE
d:=proc(n) local m; sum(binomial(m^2+n-1, n)/2^(m+1), m=0..infinity); end;
MATHEMATICA
f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, Mar 16 2005 *)
Table[Sum[Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[j^2+n-1, n], {j, 0, k}], {k, 0, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, May 03 2015, much faster *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Mar 13 2005
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Mar 16 2005
Offset corrected by Vaclav Kotesovec, May 03 2015
STATUS
approved