login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digits in (n^n)^(n^n).
1

%I #31 Jan 11 2020 15:57:47

%S 1,1,3,39,617,10922,217833,4871823,121210687,3327237897,100000000001,

%T 3268336354411,115465060699617,4386014250379643,178300955775879752,

%U 7725047653062230514,355393490465494856466,17303907095298306637188,889028356166899850147118

%N Number of digits in (n^n)^(n^n).

%C a(0) = 1 whether we take 0^0 = 1 or 0^0 = 0.

%C The standard simplification of (n^n)^(n^n) is n^(n^(n+1)). - _M. F. Hasler_, Oct 15 2019

%F a(n) = 1 + floor(n^(n+1) * log_10(n)).

%F a(10^k) = k * 10^(k*(10^k + 1)) + 1. - _Jon E. Schoenfield_, Sep 29 2019

%F a(n) = A055642(A004217(n)), n > 0. - _Felix Fröhlich_, Oct 15 2019

%e a(10) = 1 + floor(10^(10+1) * log_10(10)) = 1 + floor( 100000000000 * 1) = 100000000001.

%e a(10^3) = 3*10^3003 + 1.

%t Table[IntegerLength[(n^n)^(n^n)], {n, 1, 8}] (* Human friendly *)

%t Table[1 + Floor[n^(n + 1) * Log10[n]], {n, 1, 16}] (* Computationally efficient *)

%o (PARI) a(n) = my(x=n^n); 1 + floor(x*log(x)/log(10));

%o (PARI) A327603(n,L=log(10))=n^(n+1)*log(n)\L+1 \\ Supplying the 2nd arg allows to avoid re-computation of log(10) on each call, and also to get the number of digits in any desired base. - _M. F. Hasler_, Oct 15 2019

%Y Cf. A004217, A054382, A055642, A066022.

%K nonn,base

%O 0,3

%A _Natan Arie Consigli_, Sep 22 2019

%E a(9)-a(15) from _Nathaniel Johnston_, Sep 23 2019

%E a(13)-a(15) corrected and a(16) appended by _Natan Arie Consigli_, Sep 25 2019

%E a(17)-a(18) from _Jon E. Schoenfield_, Sep 29 2019